def fit_composit(seq, *params, report=False): x = np.arange(len(seq)) y = seq amp, cen, wid = params cmodel = CompositeModel(Model(gaussian), Model(LognormalModel), ExponentialGaussianModel) pars = cmodel.make_params(amplitude=amp, center=cen, sigma=wid, mid=cen) # 'mid' and 'center' should be completely correlated, and 'mid' is # used as an integer index, so a very poor fit variable: pars['mid'].vary = False # fit this model to data array y result = cmodel.fit(y, params=pars, x=x) # limit the amplitude to be in 0-256 cmodel.set_param_hint('amp', min=0) cmodel.set_param_hint('amp', max=256) result = gmodel.fit(y, x=x, amp=amp, cen=cen, wid=wid) if result.redchi >= 1e3: # if report: plt.figure() plt.plot(x, y, 'bo') # plt.plot(x, result.init_fit, 'k--') plt.plot(x, np.ceil(result.best_fit), 'r-') plt.title('chi2: {0:.2e} - red_chi2: {0:.2e}'.format( result.chisqr, result.redchi)) plt.show() return result
def fit_gaussian_peak_step_background_2(x, y): # create data from broadened step npts = 201 x = np.linspace(0, 10, npts) y = step(x, amplitude=12.5, center=4.5, sigma=0.88, form='erf') y = y + np.random.normal(size=npts, scale=0.35) # create Composite Model using the custom convolution operator mod = CompositeModel(Model(jump), Model(gaussian), convolve) pars = mod.make_params(amplitude=1, center=3.5, sigma=1.5, mid=5.0) # 'mid' and 'center' should be completely correlated, and 'mid' is # used as an integer index, so a very poor fit variable: pars['mid'].vary = False # fit this model to data array y result = mod.fit(y, params=pars, x=x) print(result.fit_report()) plot_components = True # plot results plt.plot(x, y, 'bo') if plot_components: # generate components comps = result.eval_components(x=x) plt.plot(x, 10 * comps['jump'], 'k--') plt.plot(x, 10 * comps['gaussian'], 'r-') else: plt.plot(x, result.init_fit, 'k--') plt.plot(x, result.best_fit, 'r-') plt.show() # #<end examples/model_doc3.py> return fit_fwhm, fit_center, fwhm_err
o[imid:] = 1.0 return o def convolve(arr, kernel): # simple convolution of two arrays npts = min(len(arr), len(kernel)) pad = np.ones(npts) tmp = np.concatenate((pad*arr[0], arr, pad*arr[-1])) out = np.convolve(tmp, kernel, mode='valid') noff = int((len(out) - npts)/2) return out[noff:noff+npts] # # create Composite Model using the custom convolution operator mod = CompositeModel(Model(jump), Model(gaussian), convolve) pars = mod.make_params(amplitude=1, center=3.5, sigma=1.5, mid=5.0) # 'mid' and 'center' should be completely correlated, and 'mid' is # used as an integer index, so a very poor fit variable: pars['mid'].vary = False # fit this model to data array y result = mod.fit(y, params=pars, x=x) print(result.fit_report()) plot_components = False # plot results plt.plot(x, y, 'bo') if plot_components:
print('Names of parameters:', model.param_names) print('Independent variable(s):', model.independent_vars) # Define boundaries for parameters to be refined model.set_param_hint('scale', min=0, max=100) model.set_param_hint('center', min=-0.1, max=0.1) model.set_param_hint('D', min=0.05, max=0.25) model.set_param_hint('resTime', min=0, max=1) model.set_param_hint('radius', min=0.9, max=1.1) model.set_param_hint('DR', min=0, max=1) # Fix some of the parameters model.set_param_hint('q', vary=False) model.set_param_hint('spectrum_nb', vary=False) params = model.make_params() # Plot of the fitting models without and convoluted with the resolution function # The values of the parameters are specified below. # Therefore they could be different from those used in the fitting. fig, ax = plt.subplots(1, 2) # First subplot for i in range(nb_q_values): xx = f_5A['x'][i] ax[0].plot(xx, QENSmodels.sqwWaterTeixeira(xx, data_5A['q'][i], scale=1, center=0, D=1,
def convolve(arr, kernel): # simple convolution of two arrays npts = min(len(arr), len(kernel)) pad = np.ones(npts) tmp = np.concatenate((pad * arr[0], arr, pad * arr[-1])) out = np.convolve(tmp, kernel, mode='valid') noff = int((len(out) - npts) / 2) return out[noff:noff + npts] # # create Composite Model using the custom convolution operator mod = CompositeModel(Model(jump), Model(gaussian), convolve) pars = mod.make_params(amplitude=1, center=3.5, sigma=1.5, mid=5.0) # 'mid' and 'center' should be completely correlated, and 'mid' is # used as an integer index, so a very poor fit variable: pars['mid'].vary = False # fit this model to data array y result = mod.fit(y, params=pars, x=x) print(result.fit_report()) plot_components = False # plot results plt.plot(x, y, 'bo') if plot_components:
return o def convolve(arr, kernel): """Simple convolution of two arrays.""" npts = min(arr.size, kernel.size) pad = np.ones(npts) tmp = np.concatenate((pad * arr[0], arr, pad * arr[-1])) out = np.convolve(tmp, kernel, mode='valid') noff = int((len(out) - npts) / 2) return out[noff:noff + npts] # create Composite Model using the custom convolution operator mod = CompositeModel(Model(jump), Model(gaussian), convolve) pars = mod.make_params(amplitude=.01, center=0, sigma=.5, mid=0.5) # 'mid' and 'center' should be completely correlated, and 'mid' is # used as an integer index, so a very poor fit variable: pars['mid'].vary = False # fit this model to data array y result = mod.fit(y, params=pars, x=x) print(result.fit_report()) # generate components comps = result.eval_components(x=x) # plot results fig, axes = plt.subplots(1, 2, figsize=(12.8, 4.8))