コード例 #1
0
def test_input_shape_and_dtype(
    lstm_model: LSTMModel,
    batch_prev_tkids: torch.Tensor,
):
    r"""Input must be long tensor."""

    try:
        lstm_model = lstm_model.eval()
        lstm_model.pred(batch_prev_tkids)
    except Exception:
        assert False
コード例 #2
0
def test_forward_path(
    lstm_model: LSTMModel,
    batch_prev_tkids: torch.Tensor,
):
    r"""Parameters used during forward must have gradients."""
    # Make sure model has no gradients.
    lstm_model = lstm_model.train()
    lstm_model.zero_grad()

    lstm_model(batch_prev_tkids).sum().backward()

    assert hasattr(lstm_model.emb.weight.grad, 'grad')
    assert hasattr(lstm_model.pre_hid[0].weight.grad, 'grad')
    assert hasattr(lstm_model.hid.weight_ih_l0.grad, 'grad')
    assert hasattr(lstm_model.post_hid[-1].weight.grad, 'grad')
コード例 #3
0
def test_value_range(
    lstm_model: LSTMModel,
    batch_prev_tkids: torch.Tensor,
):
    r"""Return values are probabilities."""
    lstm_model = lstm_model.eval()
    out = lstm_model.pred(batch_prev_tkids)

    # Probabilities are values within range [0, 1].
    assert torch.all(0 <= out).item()
    assert torch.all(out <= 1).item()

    # Sum of the probabilities equals to 1.
    accum_out = out.sum(dim=-1)
    assert torch.allclose(accum_out, torch.ones_like(accum_out))
コード例 #4
0
    def setUp(self):
        r"""Setup hyperparameters and construct `LSTMModel`."""
        self.model_objs = []
        cls = self.__class__
        for d_emb in cls.d_emb_range:
            for d_hid in cls.d_hid_range:
                for dropout in cls.dropout_range:
                    for num_linear_layers in cls.num_linear_layers_range:
                        for num_rnn_layers in cls.num_rnn_layers_range:
                            for pad_token_id in cls.pad_token_id_range:
                                for vocab_size in cls.vocab_size_range:
                                    # skip invalid construct.
                                    if vocab_size <= pad_token_id:
                                        continue

                                    model = LSTMModel(
                                        d_emb=d_emb,
                                        d_hid=d_hid,
                                        dropout=dropout,
                                        num_linear_layers=num_linear_layers,
                                        num_rnn_layers=num_rnn_layers,
                                        pad_token_id=pad_token_id,
                                        vocab_size=vocab_size
                                    )
                                    self.model_objs.append({
                                        'd_emb': d_emb,
                                        'd_hid': d_hid,
                                        'dropout': dropout,
                                        'model': model,
                                        'num_linear_layers': num_linear_layers,
                                        'num_rnn_layers': num_rnn_layers,
                                        'pad_token_id': pad_token_id,
                                        'vocab_size': vocab_size,
                                    })
コード例 #5
0
    def test_invalid_input_pad_token_id_and_vocab_size(self):
        r"""Raise `ValueError` when input `vocab_size <= pad_token_id`."""
        msg1 = (
            'Must raise `ValueError` when input `vocab_size <= pad_token_id`.'
        )
        msg2 = 'Inconsistent error message.'
        examples = ((2, 1), (3, 2), (4, 3), (10, 1))

        for pad_token_id, vocab_size in examples:
            with self.assertRaises(ValueError, msg=msg1) as ctx_man:
                LSTMModel(
                    d_emb=1,
                    d_hid=1,
                    dropout=0.1,
                    num_linear_layers=1,
                    num_rnn_layers=1,
                    pad_token_id=pad_token_id,
                    vocab_size=vocab_size,
                )

            self.assertEqual(
                ctx_man.exception.args[0],
                '`pad_token_id` must be smaller than `vocab_size`.',
                msg=msg2
            )
コード例 #6
0
def test_return_shape_and_dtype(
    lstm_model: LSTMModel,
    batch_prev_tkids: torch.Tensor,
    batch_next_tkids: torch.Tensor,
):
    r"""Return float tensor with 0 dimension."""
    lstm_model = lstm_model.eval()
    loss = lstm_model.loss_fn(
        batch_prev_tkids=batch_prev_tkids,
        batch_next_tkids=batch_next_tkids,
    )

    # 0 dimension tensor.
    assert loss.shape == torch.Size([])
    # Return float tensor.
    assert loss.dtype == torch.float
コード例 #7
0
def test_n_pre_hid_lyr(tknzr: BaseTknzr):
    r"""``n_pre_hid_lyr`` must be an instance of `int` and be positive."""
    # Test case: Type mismatched.
    wrong_typed_inputs = [
        0.0, 0.1, 1.0, '', (), [], {}, set(), None, ..., NotImplemented,
    ]

    for bad_n_pre_hid_lyr in wrong_typed_inputs:
        with pytest.raises(TypeError) as excinfo:
            LSTMModel(
                d_emb=1,
                d_hid=1,
                n_hid_lyr=1,
                n_pre_hid_lyr=bad_n_pre_hid_lyr,
                n_post_hid_lyr=1,
                p_emb=0.0,
                p_hid=0.0,
                tknzr=tknzr,
            )

        assert (
            '`n_pre_hid_lyr` must be an instance of `int`'
            in str(excinfo.value)
        )

    # Test case: Invalid value.
    wrong_value_inputs = [
        0, -1, -2,
    ]

    for bad_n_pre_hid_lyr in wrong_value_inputs:
        with pytest.raises(ValueError) as excinfo:
            LSTMModel(
                d_emb=1,
                d_hid=1,
                n_hid_lyr=1,
                n_pre_hid_lyr=bad_n_pre_hid_lyr,
                n_post_hid_lyr=1,
                p_emb=0.0,
                p_hid=0.0,
                tknzr=tknzr,
            )

        assert (
            '`n_pre_hid_lyr` must be bigger than or equal to `1`'
            in str(excinfo.value)
        )
コード例 #8
0
def test_input_shape_and_dtype(
    lstm_model: LSTMModel,
    batch_prev_tkids: torch.Tensor,
    batch_next_tkids: torch.Tensor,
):
    r"""Input tensors must be long tensors and have the same shape.

    Same shape is required since we are using teacher forcing.
    """
    try:
        lstm_model = lstm_model.eval()
        lstm_model.loss_fn(
            batch_prev_tkids=batch_prev_tkids,
            batch_next_tkids=batch_next_tkids,
        )
    except Exception:
        assert False
コード例 #9
0
def test_return_shape_and_dtype(
    lstm_model: LSTMModel,
    batch_prev_tkids: torch.Tensor,
):
    r"""Return float tensor with correct shape."""
    lstm_model = lstm_model.eval()
    out = lstm_model.pred(batch_prev_tkids)

    # Output float tensor.
    assert out.dtype == torch.float

    # Input shape: (B, S).
    # Output shape: (B, S, V).
    assert out.shape == (
        batch_prev_tkids.shape[0],
        batch_prev_tkids.shape[1],
        lstm_model.emb.num_embeddings,
    )
コード例 #10
0
def test_p_hid(tknzr: BaseTknzr):
    r"""``p_hid`` must be an instance of `float` and must be a probability."""
    # Test case: Type mismatched.
    wrong_typed_inputs = [
        False, True, 0, 1, '', (), [], {}, set(), None, ..., NotImplemented,
    ]

    for bad_p_hid in wrong_typed_inputs:
        with pytest.raises(TypeError) as excinfo:
            LSTMModel(
                d_emb=1,
                d_hid=1,
                n_hid_lyr=1,
                n_pre_hid_lyr=1,
                n_post_hid_lyr=1,
                p_emb=0.0,
                p_hid=bad_p_hid,
                tknzr=tknzr,
            )

        assert '`p_hid` must be an instance of `float`' in str(excinfo.value)

    # Test case: Invalid value.
    wrong_value_inputs = [
        -1.0, -0.1, 1.1, 2.0,
    ]

    for bad_p_hid in wrong_value_inputs:
        with pytest.raises(ValueError) as excinfo:
            LSTMModel(
                d_emb=1,
                d_hid=1,
                n_hid_lyr=1,
                n_pre_hid_lyr=1,
                n_post_hid_lyr=1,
                p_emb=0.0,
                p_hid=bad_p_hid,
                tknzr=tknzr,
            )

        assert (
            '`p_hid` must be in the range from `0.0` to `1.0`'
            in str(excinfo.value)
        )
コード例 #11
0
def test_back_propagation_path(
    lstm_model: LSTMModel,
    batch_prev_tkids: torch.Tensor,
    batch_next_tkids: torch.Tensor,
):
    r"""Gradients with respect to loss must get back propagated."""
    # Make sure model has no gradients.
    lstm_model = lstm_model.train()
    lstm_model.zero_grad()

    lstm_model.loss_fn(
        batch_prev_tkids=batch_prev_tkids,
        batch_next_tkids=batch_next_tkids,
    ).backward()

    assert hasattr(lstm_model.emb.weight.grad, 'grad')
    assert hasattr(lstm_model.pre_hid[0].weight.grad, 'grad')
    assert hasattr(lstm_model.hid.weight_ih_l0.grad, 'grad')
    assert hasattr(lstm_model.post_hid[-1].weight.grad, 'grad')
コード例 #12
0
def lstm_model(
    tknzr: BaseTknzr,
    d_emb: int,
    d_hid: int,
    n_hid_lyr: int,
    n_pre_hid_lyr: int,
    n_post_hid_lyr: int,
    p_emb: float,
    p_hid: float,
) -> LSTMModel:
    r"""Example ``LSTMModel`` instance."""
    return LSTMModel(
        d_emb=d_emb,
        d_hid=d_hid,
        n_hid_lyr=n_hid_lyr,
        n_pre_hid_lyr=n_pre_hid_lyr,
        n_post_hid_lyr=n_post_hid_lyr,
        p_emb=p_emb,
        p_hid=p_hid,
        tknzr=tknzr,
    )
コード例 #13
0
    def test_invalid_input_vocab_size(self):
        r"""Raise exception when input `vocab_size` is invalid."""
        msg1 = (
            'Must raise `TypeError` or `ValueError` when input `vocab_size` '
            'is invalid.'
        )
        msg2 = 'Inconsistent error message.'
        examples = (
            False, 0, 0.0, 1.0, math.nan, -math.nan, math.inf, -math.inf, 0j,
            1j, '', b'', (), [], {}, set(), object(), lambda x: x, type, None,
            NotImplemented, ...
        )

        for invalid_input in examples:
            with self.assertRaises(
                    (TypeError, ValueError),
                    msg=msg1
            ) as ctx_man:
                LSTMModel(
                    d_emb=1,
                    d_hid=1,
                    dropout=0.1,
                    num_linear_layers=1,
                    num_rnn_layers=1,
                    pad_token_id=0,
                    vocab_size=invalid_input
                )

            if isinstance(ctx_man.exception, TypeError):
                self.assertEqual(
                    ctx_man.exception.args[0],
                    '`vocab_size` must be an instance of `int`.',
                    msg=msg2
                )
            else:
                self.assertEqual(
                    ctx_man.exception.args[0],
                    '`vocab_size` must be bigger than or equal to `1`.',
                    msg=msg2
                )
コード例 #14
0
def test_save_and_load(tknzr: BaseTknzr, ckpt: int, exp_name: str,
                       clean_model):
    r"""Saved parameters are the same as loaded."""
    model = LSTMModel(
        d_emb=1,
        d_hid=1,
        n_hid_lyr=1,
        n_pre_hid_lyr=1,
        n_post_hid_lyr=1,
        p_emb=0.5,
        p_hid=0.5,
        tknzr=tknzr,
    )

    # Save model parameters.
    model.save(
        ckpt=ckpt,
        exp_name=exp_name,
    )

    # Load model parameters.
    load_model = LSTMModel.load(
        ckpt=ckpt,
        exp_name=exp_name,
        d_emb=1,
        d_hid=1,
        n_hid_lyr=1,
        n_pre_hid_lyr=1,
        n_post_hid_lyr=1,
        p_emb=0.5,
        p_hid=0.5,
        tknzr=tknzr,
    )

    # Ensure parameters are the same.
    for p_1, p_2 in zip(model.parameters(), load_model.parameters()):
        assert torch.equal(p_1, p_2)