コード例 #1
0
ファイル: test_img.py プロジェクト: sublimationAC/DDE
def load_one_data(path):
    
    data=[]
    print('load_one_data')
    load.load(data,path,'jpg',num_ide=77,num_exp=47,num_land=73)
    print(data)
    return data
コード例 #2
0
ファイル: test_img.py プロジェクト: sublimationAC/DDE
def load_set_data():
    data=[]
    fwhs_path='/home/weiliu/fitting_dde/fitting_psp_f_l12_slt/fw'
    lfw_path='/home/weiliu/fitting_dde/fitting_psp_f_l12_slt/lfw_image'
    gtav_path='/home/weiliu/fitting_dde/fitting_psp_f_l12_slt/GTAV_image'
    
    
    load.load(data,fwhs_path,'jpg',num_ide=77,num_exp=47,num_land=73)
    load.load(data,lfw_path,'jpg',num_ide=77,num_exp=47,num_land=73)     
    load.load(data,gtav_path,'png',num_ide=77,num_exp=47,num_land=73)     
    
#    test_path='/home/weiliu/fitting_dde/4_psp_f_cal_test/data_me/test_only_three/'
#    load.load(data,test_path,'jpg',num_ide=77,num_exp=47,num_land=73)
    return data
コード例 #3
0
    _, Z = forward(X, Node, W, B, h)
    L = len(Node)
    arg = np.argmax(Z[L-1], axis=0)
    return np.average(arg == t)

def noise_on_train(X):
    num_rand = np.random.binomial(n=784*N, p=noise*0.05)
    rand_mask_arg = np.random.choice(784*N, num_rand, replace=False)
    rand_mask = np.zeros(784*N).astype(np.bool_)
    rand_mask[rand_mask_arg] = True
    rand_mask.shape = [784, N]
    X[rand_mask] = np.random.rand(num_rand)
    return X

if __name__ == "__main__":
    dataset = load.load()
    t_train = one_of_k(dataset["train_labels"]).T #shape (10, 60000)
    t_test = dataset["test_labels"]
    X_train = dataset["train_images"].T/255 #shape (784, 60000)
    X_test = dataset["test_images"].T/255 #shape (784, 10000)


    #Hyper Param
    N = 1000 # number of minibatch 
    M = 2000 # maximum iterations (epoch)
    e = 0.1 # learning rate
    w_init_mean = 0
    w_init_sigma = 0.1
    Node = [784, 256, 128, 64, 10]
    L = len(Node)