コード例 #1
0
            fw_cell = tf.nn.rnn_cell.DropoutWrapper(fw_cell, output_keep_prob=dropout)
        lstm_fw_cell_m = tf.nn.rnn_cell.MultiRNNCell([fw_cell] * layers, state_is_tuple=True)

        outputs,_=tf.nn.dynamic_rnn(lstm_fw_cell_m,x,dtype=tf.float32)

    return outputs



x1=tf.placeholder(shape=[1,None,256],dtype=tf.float32)
x2=tf.placeholder(shape=[1,None,256],dtype=tf.float32)
isTraining=tf.placeholder(dtype=tf.bool)



char_embedding=ld.load_char_embedding()
word_embedding=ld.load_word_embedding()
topic_des=ld.load_topic_des().fillna("</s>")
question_topic=ld.load_question_topic()

with open("/media/ada/软件/BaiduNetdiskDownload/ieee_zhihu_cup/ieee_zhihu_cup/question_train_set.txt") as f:
    question_des=f.readline().strip("\n").split("\t")
    question_id=question_des[0]

    question_ct=question_des[1].split(",")
    question_wt=question_des[2].split(",")
    question_cd=question_des[3].split(",")
    question_wd=question_des[4].split(",")

    topic_id=(question_topic.loc[question_topic['question_id']==int(question_id)][['topic_id']]).values
    topic_id=topic_id.reshape([1])
コード例 #2
0
ファイル: my_eval.py プロジェクト: junglery/zhihu_kanshanbei
def train(args):
    file=open("/media/ada/软件/BaiduNetdiskDownload/ieee_zhihu_cup/ieee_zhihu_cup/question_eval.csv","a")
    topic_info = pd.read_csv("/media/ada/软件/BaiduNetdiskDownload/ieee_zhihu_cup/ieee_zhihu_cup/topic_num.txt",
                             header=None, sep="\t")
    char_embedding = ld.load_char_embedding()
    args.vocab_size = char_embedding.shape[0]

    global ckpt
    if args.init_from is not None:
        ckpt = tf.train.get_checkpoint_state(args.init_from)

    model = Model(args,True)


    #word_embedding = ld.load_word_embedding()




    with tf.Session() as sess:

        init = tf.global_variables_initializer()
        sess.run(init)
        saver = tf.train.Saver()

        if args.init_from is not None:
            saver.restore(sess, ckpt.model_checkpoint_path)

        num = 0
        header_list = []
        for i in range(1, 257, 1):
            header_list.append(str(i))
        x_ = []
        temp = []
        for i in range(256):
            temp.append(0)
        with open("/media/ada/软件/BaiduNetdiskDownload/ieee_zhihu_cup/ieee_zhihu_cup/question_eval_set.txt","r") as f:
            question_des = True
            # for i in range(200):                                         #已经训练了200代
            #    question_topic=f.readline().strip("\n").split("\t")
            while (True):

                question_des = f.readline().strip("\n").split("\t")
                num += 1
                if (num == 216467):
                    break
            while (question_des):
                question_des = f.readline().strip("\n").split("\t")
                num+=1

                question_id = question_des[0]

                question_ct = question_des[1].split(",")
                '''
                question_wt = \
                question_des.loc[question_des['question_id'] == int(question_id)][['question_name_word']].values[0][
                    0].split(",")
                question_cd = \
                question_des.loc[question_des['question_id'] == int(question_id)][['question_des_char']].values[0][
                    0].split(",")
                question_wd = \
                question_des.loc[question_des['question_id'] == int(question_id)][['question_des_word']].values[0][
                    0].split(",")
                    '''

                question_ct_embedding = []



                if(len(question_ct)>args.seq_length):
                    question_ct=question_ct[:args.seq_length]

                for question_ct_ in question_ct:
                    if (len(char_embedding.loc[char_embedding['char'] == question_ct_]) == 0):
                        temp = np.random.rand(256)
                        question_ct_embedding.append(temp)




                    else:
                        question_ct_embedding.append(
                            char_embedding.loc[char_embedding['char'] == question_ct_][header_list].values[0])

                while(len(question_ct_embedding)<args.seq_length):
                    question_ct_embedding.append(temp)
                question_ct_embedding = np.mat(question_ct_embedding, dtype=np.float32)



                x_.append(question_ct_embedding)
                index=[-1 for i in range(5)]
                index=np.array(index)

                probablity=model.predict_class(sess, x_)[0]

                priority=[-1 for j in range(5)]
                for m in range(2000):
                    for n in range(5):
                        if(probablity[m]>priority[n]):
                            for k in range(3,n-1,-1):
                                priority[k+1]=priority[k]
                                index[k+1]=index[k]
                            index[n] = m
                            priority[n] = probablity[m]
                            break




                print(num,question_id)
                buffer=str(question_id)
                #file.write(str(question_id))
                for k__ in range(5):
                    #file.write(","+str(topic_info[1][index[k__]]))
                    buffer=buffer+(","+str(topic_info[1][index[k__]]))
                #file.write("\n")
                buffer+=("\n")
                file.write(buffer)
                x_=[]
                if(num%10==0):
                    file.flush()



    file.close()
コード例 #3
0
ファイル: my_train.py プロジェクト: junglery/zhihu_kanshanbei
def train(args):
    char_embedding = ld.load_char_embedding()
    args.vocab_size = char_embedding.shape[0]

    global ckpt
    if args.init_from is not None:
        ckpt = tf.train.get_checkpoint_state(args.init_from)

    model = Model(args)

    #word_embedding = ld.load_word_embedding()
    question_des = ld.load_question_des()
    topic_des = ld.load_topic_des()

    num = 0

    with tf.Session() as sess:

        init = tf.global_variables_initializer()
        sess.run(init)
        saver = tf.train.Saver()

        if args.init_from is not None:
            saver.restore(sess, ckpt.model_checkpoint_path)

        x_ = []
        y_ = []
        temp = []
        for i in range(256):
            temp.append(0)
        with open(
                "/media/ada/软件/BaiduNetdiskDownload/ieee_zhihu_cup/ieee_zhihu_cup/question_topic_train_set.txt"
        ) as f:
            while (True):
                question_topic = f.readline().strip("\n").split("\t")
                num += 1
                if (num == 1):
                    break
            # for i in range(200):                                   #已经训练了200代
            #    question_topic=f.readline().strip("\n").split("\t")
            while (question_topic):
                question_topic = f.readline().strip("\n").split("\t")
                num += 1

                if (num == 500000):
                    break

                question_id = question_topic[0]
                topic_id = question_topic[1].split(",")

                question_ct = \
                question_des.loc[question_des['question_id'] == int(question_id)][['question_name_char']].values[0][
                    0].split(",")
                '''
                question_wt = \
                question_des.loc[question_des['question_id'] == int(question_id)][['question_name_word']].values[0][
                    0].split(",")
                question_cd = \
                question_des.loc[question_des['question_id'] == int(question_id)][['question_des_char']].values[0][
                    0].split(",")
                question_wd = \
                question_des.loc[question_des['question_id'] == int(question_id)][['question_des_word']].values[0][
                    0].split(",")
                    '''

                question_ct_embedding = []

                if (len(question_ct) <= 10):
                    continue
                if (len(question_ct) > args.seq_length):
                    question_ct = question_ct[:args.seq_length]

                for question_ct_ in question_ct:
                    header_list = []
                    for i in range(1, 257, 1):
                        header_list.append(str(i))
                    if (len(char_embedding.loc[char_embedding['char'] ==
                                               question_ct_]) == 0):
                        temp = np.random.rand(256)
                        question_ct_embedding.append(temp)

                    else:
                        question_ct_embedding.append(char_embedding.loc[
                            char_embedding['char'] == question_ct_]
                                                     [header_list].values[0])

                while (len(question_ct_embedding) < args.seq_length):
                    question_ct_embedding.append(temp)
                question_ct_embedding = np.mat(question_ct_embedding,
                                               dtype=np.float32)

                for topic_ in topic_id:
                    index = 0
                    #y_temp=np.zeros([2000])
                    while (True):
                        if (topic_des['topic_id'][index] == int(topic_)):
                            #y_temp[index] = 1
                            break
                        index += 1
                    x_.append(question_ct_embedding)
                    y_.append(index)  #0,1,2,3
                    break
                if (len(x_) == args.batch_size):
                    print(num)
                    x, y = x_, y_
                    e = num / 32 + 100000
                    sess.run(
                        tf.assign(model.lr,
                                  args.learning_rate * (args.decay_rate**e)))
                    feed = {model.input_data: x, model.targets: y}
                    for i in range(3):
                        #start = time.time()
                        train_loss, state, _, accuracy = sess.run(
                            [
                                model.cost, model.final_state, model.optimizer,
                                model.accuracy
                            ],
                            feed_dict=feed)
                        print(train_loss, accuracy)
                    print("prediction:", model.predict_class(sess, x_))
                    x_ = []
                    y_ = []

        saver.save(sess, "./data_1/model.ckpt_1")
        print("model saved,path:./data_1.model.ckpt_1")