def bt_show_image(self): self.textedit.append("Make prediction ...") img = load_img(self.image_path).resize((32, 32)) x = img_to_array(img) x = normalize(x.reshape((1, ) + x.shape)) result = np.argmax(self.cnn.single_predict(x)) self.textedit.append("The food is: {}".format(self.food_list[result])) # self.show_index = np.random.randint(3, 1000) # for i in range(3): self.lb_target2.setPixmap( QPixmap("./{}/2.jpg".format(result)).scaled(100, 100))
import numpy as np from load import loadLasso, normalize import matplotlib.pyplot as plt from equations_regression import * np.random.seed(40) # load lasso data and normalize: X, y = loadLasso(version="train") Xv, yv = loadLasso(version="test") X = normalize(X) Xv = normalize(Xv) # add bias term (column of ones): x = np.ones((np.shape(X)[0], np.shape(X)[1] + 1)) x[:, 1:np.shape(X)[1] + 1] = X xv = np.ones((np.shape(Xv)[0], np.shape(Xv)[1] + 1)) xv[:, 1:np.shape(Xv)[1] + 1] = Xv # store data dimensions: p = np.shape(x)[0] # samples -> 50 n = np.shape(x)[1] # dimensions -> 101 # set regularization term: alpha = np.logspace(0.3, 0.6, 100) # initialize for cross fold validation: cost_crossfold_ridge_test = np.zeros(len(alpha)) counter = 0 # cross validation:
from imports import * from load import load_data, mapValues, getgen, normalize from schedule import getcallbacks, totalepochs from model import getmodel Xall, Yall, Xtest, Ytest = load_data() Xall, Xtest = Xall.astype(np.float32), Xtest.astype(np.float32) Nall, Ntest = Xall.shape[0], Xtest.shape[0] print( "Training data before split: {}\nTest data: {}\nTraining labels before split: {}\nTest labels: {}" .format(Xall.shape, Xtest.shape, Yall.shape, Ytest.shape)) Xall, Xtest = mapValues(Xall, 0, 255, save=True), mapValues(Xtest, 0, 255) Xall, Xtest = normalize(Xall), normalize(Xtest) print("Intensities after scaling: min={}, max={}, mean={}, std={}".format( np.min(Xall.flatten()), np.max(Xall.flatten()), np.mean(Xall.flatten()), np.std(Xall.flatten()))) Xtrain, Xval, Ytrain, Yval = train_test_split(Xall, Yall, test_size=0.1, random_state=SEED) print("Train data: {}, Validation data: {}".format(Xtrain.shape, Xval.shape)) model = getmodel() if DO_TRAIN: history = model.fit_generator(generator=getgen().flow(Xtrain, Ytrain, batch_size=BS), steps_per_epoch=int(Xtrain.shape[0] / BS), epochs=totalepochs(SCHEDULE),
def get_ai_moves(game): board = get_board_weird(game) board = numpy.asarray(board) board = normalize(board) #board = append_snake(board) return ann.predict_move(board)
def correlated_inputs(): n = 3 # dimensions p = 1000 # samples #w = [2.0, 3.0, 0.0] w = [-2.0, 3.0, 0.0] x = np.zeros((p, n)) x[:, 0:2] = np.random.randn(p, 2) x[:, 2] = (2.0 / 3.0) * x[:, 0] + (2.0 / 3.0) * x[:, 1] + ( 1.0 / 3.0) * np.random.randn(p) y = np.matmul(w, np.transpose(x)) + np.random.randn(p) return x, y # load data: X, y = correlated_inputs() x = normalize(X) # store data dimensions: p = np.shape(x)[0] # samples -> 1000 n = np.shape(x)[1] # dimensions -> 3 # set regularization term: alpha = np.logspace(-5, 2, 100) # initialize for cross fold validation: weights_crossfold = np.zeros((len(alpha), n)) counter = 0 # cross validation: for decay in alpha: if counter == 0: