# Import import sys sys.path.append('../') import loadData import datetime # Data data = loadData.getID2Data() data_ordered = [] N = len(data) i = N - 1 while i >= 0: data_ordered.append(data[i]) i -= 1 file = open("../Trans_Data/ID2_ordered.csv", "w") file.write("latitude,longitude,time\n") for p in data_ordered: file.write(str(p[0]) + ',' + str(p[1]) + ',' + str(p[2]) + "\n") file.close()
__author__ = "Gabriel" """ Kmean on position """ import loadData as ld import clustering as clus import sklearn.cluster as cluster import numpy as np from statistics import mean, median data = ld.getID2Data() ######If you want to select particular moments in the day timeShift = -8 # San Francisco data = ld.dataSelectTime(data, 0, 24, [0, 1, 2, 5, 6], timeShift) ####### Modulo 24 hours # data = clus.temporalAround24removed(data) data = clus.temporalAround7Daysremoved(data) #######Remove time # data=clus.removeTime(data) kk = cluster.KMeans(n_clusters=5, random_state=0) out = kk.fit(data) clus.plotCluster(data, out.labels_, 5) print("Cluster center " + str(out.cluster_centers_))