def loadFile(self): print(self.path) self.dataList = loader.load(self.path) print(self.dataList[0]) self.calculateE() self.min = self.dataList[0][0] self.max = self.dataList[0][-1] self.savePlot() self.print_graph()
def get(self): offset = self.request.get('offset') if offset == '': offset = 0 offset = int(float(offset)) (meals, entrees) = loadData.load(offset) #(meals, entrees) = models.getMealsAndEntrees() #menus = models.getHomeMenus() #self.response.out.write(menus) for m in meals: self.response.out.write(m.html_string()) for e in entrees: self.response.out.write(e.html_string())
def showDWT(): path = './bci2003' subject = 'trainData_DWT'.split(' ') loadData = load(subNames=subject, path=path) (x_train, y_train) = loadData.loadTrainDataFromTxt() d_avg = dict() for tp in range(2): tmp_index = indices(y_train, tp) #print(len(tmp_index)) #show class quantity tempList = x_train[tmp_index] fixList = np.sum(tempList, axis=0) resultList = np.divide(fixList, tempList.shape[0]) d_avg[tp] = resultList plt.subplot(211) plt.plot(d_avg[0]) plt.legend(['c3', 'cZ', 'c4'], loc='upper left') plt.subplot(212) plt.plot(d_avg[1]) plt.legend(['c3', 'cZ', 'c4'], loc='upper left') plt.show() print("end")
def showAveragepower(): path = './bci2003/' subject = 'trainData'.split(' ') loadData = load(subNames=subject, path=path, isRand=True) (x_train, y_train) = loadData.loadTrainDataFromTxt() d_avg = dict() for tp in range(2): tmp_index = indices(y_train, tp) #print(len(tmp_index)) #show class quantity tempList = x_train[tmp_index] fixList = np.sum(tempList, axis=0) resultList = np.divide(fixList, tempList.shape[0]) d_avg[tp] = resultList LH = np.array(d_avg[0]) RH = np.array(d_avg[1]) time = np.arange(LH[:, 0].size) / 128 plt.subplot(211) plt.plot(time, LH) plt.legend(['c3', 'cZ', 'c4'], loc='upper left') plt.subplot(212) plt.plot(time, RH) plt.legend(['c3', 'cZ', 'c4'], loc='upper left') plt.show()
import numpy as np import loadData as ld import writeToCSV as wc if __name__ == '__main__': # path = './result/mistake_rate_0.0.csv' # data = ld.load(path) # matrix = np.asmatrix(data, dtype=float) # print(matrix) result_path = './result/mistake_rate_' mistake_rate = ['0.0', '0.05', '0.1', '0.2', '0.3', '0.5'] for mr in mistake_rate: maxtrix = np.zeros([50, 5], dtype=float) max_iter = 100 file = result_path + mr + '.csv' for i in range(0, max_iter): path = result_path + mr + '_' + str(i) + '.csv' data = ld.load(path) maxtrix += np.asmatrix(data, dtype=float) maxtrix /= max_iter wc.writecsvByName(maxtrix, file)
Created on Mon Nov 28 20:56:36 2016 @author: xierhacker """ from __future__ import print_function, division import numpy as np import tensorflow as tf from scipy.io import loadmat from scipy.io import savemat import matplotlib.pyplot as plt import loadData #import dp #load data train_samples, train_labels = loadData.load("../data/train_32x32") test_samples, test_labels = loadData.load("../data/test_32x32") ''' #print the infomation of the data #you can remove the comment to run this code print("the shape of train_set:",train_samples.shape) print("the shape of train_labels:",train_labels.shape[0]) print("type of samples element:",train_samples.dtype) print("type of labels element:",train_labels.dtype) print("1-20:\n",train_labels[1:20]) ''' #data transformat train_samples, train_labels = loadData.transformat(train_samples, train_labels) test_samples, test_labels = loadData.transformat(test_samples, test_labels) '''
from keras.layers.recurrent import LSTM from keras.layers.wrappers import Bidirectional from keras.optimizers import RMSprop from keras.callbacks import Callback, ModelCheckpoint from keras.models import load_model from keras.utils import plot_model np.random.seed(1337) # for reproducibility gpu_options = tf.GPUOptions(allow_growth=True) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) # load train dataset OUTPUT_SIZE = 2 path = './bci2003' subject = 'trainData_DWT'.split(' ') getDataClass = load(subNames=subject, path=path, notEqual='n',isRand=True) (x_train, y_train) = getDataClass.loadTrainDataFromTxt() y_train = np_utils.to_categorical(y_train, num_classes=OUTPUT_SIZE) print('x_train shape:', x_train.shape) print('y_train shape:', y_train.shape) # load test dataset path = './bci2003' subject = 'testData_DWT'.split(' ') getDataClass = load(subNames=subject, path=path, notEqual='n',isRand=True) (x_test, y_test) = getDataClass.loadTrainDataFromTxt() print('x_test shape:', x_train.shape) print('y_test shape:', y_train.shape) BATCH_SIZE = 16 EPOCHS = 200 TIME_STEPS = x_train.shape[1]
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from loadData import load from sklearn.linear_model import LogisticRegression as LR def logisticRegressionTrain(trainData, trainLabels, solver="liblinear"): model = LR(solver=solver) model.fit(trainData, np.array(trainLabels).ravel()) return model def logisticRegressionEvaluate(model, data, labels): predictions = model.predict(data) errors = (predictions != np.array(labels).ravel()) return 100 * np.mean(errors) if __name__ == '__main__': trainData, trainLabels, testData, testLabels = load() model = logisticRegressionTrain(trainData, trainLabels) trainError = logisticRegressionEvaluate(model, trainData, trainLabels) print "Training Error: " + trainError testError = logisticRegressionEvaluate(model, testData, testLabels) print "Test Error: " + testError
# -*- coding:utf-8 -*- #对分类问题进行学习拟合 import math import random import numpy as np import scipy.optimize as op import matplotlib.pyplot as plt import time from loadData import load #--导入训练数据 data = load(r"F:\SomeMLProjects\ex2data1.txt") #data前两列为x 最后一列为y 注意要将y化为矩阵形式 x = np.c_[data[:, 0], data[:, 1]] y = np.array([data[:, 2]]).T # 以当前时间戳的int为随机数种子 np.random.seed(int(time.time())) # 对于只有一行的矩阵 np.random.randn输出的也会是个数组中的数组 # theta个数与单个输入x的维度一样 此处1表示列长度 m = np.size(x, 1) theta = np.random.randn(m, 1) #print(theta) testX = [] testY = [] J_history = [] i_history = []
import numpy as np import tensorflow as tf from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, LSTM, BatchNormalization, Conv1D, MaxPooling1D import matplotlib.pyplot as plt import loadData import preprocess from sklearn import preprocessing import pandas as pd df = loadData.load() # features=len(df.columns) training_size = 0.8 spilt_point = int(training_size * len(df)) #splitting data for training and testing in ratio 8:2 train_df = df[:spilt_point] test_df = df[spilt_point:] print(f"train_df {train_df[:10]}") print(f"test_df {test_df[:10]}") train_x, train_y = preprocess.process_data(train_df) test_x, test_y = preprocess.process_data(test_df) # print(f"train_x.shape[1:]{train_x.shape[1:]}") NAME = "NIFTY50PRED"
args = parser.parse_args() # setup correct name args.save_name = args.sampling + "_" + str(args.no_lines) + "lines_" + str( args.seed) + "seed" # set up the gpu args.device = cudaDeviceChecker.device(args) # put a limit on cpu resources used by pytorch torch.set_num_threads(8) torch.random.manual_seed(args.seed) # load data dataloader_train, dataloader_val, dataloader_test = loadData.load(args) # %% create network depending on the type of sampling performed if args.sampling in ["random_uniform", "low_pass", "VDS", "GMS"]: Network = myModel.fixedMask(args) if args.sampling == "LOUPE": Network = myModel.LOUPEMask(args) if args.sampling == "DPS": Network = myModel.DPSMask(args) if args.sampling == "ADPS": Network = myModel.ADPSMask(args) Network = Network.to(args.device) # discriminator network Discriminator = discriminatorModel.Discriminator(args)
def cluster(): # INITIALIZE PARAMETERS y, dates = loadData.load() sampling_rate = 1 start = 400 end = 1500 eps = 26 min_samples = 25 threshold = 0.9 branching_factor = 5 # CUSTOMIZE TRAIN DATA array = [] for i in range(151): # x = y[i][0] x = y[0][i] # x = x[2000:4000] x = x[start:end:sampling_rate] array.append(x) X_train = np.array(array) X_train = preprocessing.scale(X_train, axis=1) array = [] for x in X_train: x = x.flatten() fs = float(end - start) fc = float(20) w = float(fc / (fs / 2)) b, a = signal.butter(5, w, 'low') xx1 = signal.filtfilt(b, a, x) array.append(xx1) X_train = np.array(array) print(np.linalg.norm(X_train[15] - X_train[14])) # nbrs = NearestNeighbors(n_neighbors=len(X_train)).fit(X_train) # distances, indices = nbrs.kneighbors(X_train) # # print(distances.flatten().shape) # # print(distances.shape) # sortedDiss = distances.flatten() # sortedDiss = np.sort(sortedDiss) # index = np.arange(0,22801) # plt.plot(sortedDiss, index) # plt.ylabel('indices') # plt.xlabel('distance') # plt.show() # clustering = OPTICS(min_samples=5).fit(X_train) clustering = DBSCAN(eps=eps, min_samples=min_samples).fit(X_train) # clustering = KMeans(n_clusters=3, random_state=0).fit(X_train) # clustering = AgglomerativeClustering(n_clusters=3).fit(X_train) # clustering = Birch(branching_factor=branching_factor, n_clusters=3, threshold=threshold, compute_labels=True).fit(X_train) for n, i in enumerate(clustering.labels_): if i == -1: clustering.labels_[n] = 2 y_pred = clustering.labels_ sink_indices = [u'040928', u'050606', u'061211'] source_indices = [u'071004'] for i in range(151): if dates[i][0] in sink_indices: y_pred[i] = 1 if dates[i][0] in source_indices: y_pred[i] = 0 print(type(y_pred)) append_title = "DBSCAN Algorithm with minSamples={}, eps={}".format( min_samples, eps) # fcluster2 = filter_data.filter(X_train, 50, 6) plots.plotCluster(0, y_pred, X_train, dates, sampling_rate, end, start, append_title, analyse=True) # plots.plotCluster(1, y_pred, X_train, dates, sampling_rate, end, start, append_title, analyse=True) # plots.plotCluster(2, y_pred, X_train, dates, sampling_rate, end, start, append_title) # plots.plotCluster(2, y_pred, fcluster2, dates, sampling_rate, end, start, append_title) return y_pred, X_train
dataList[0] = tempRange dataList[1] = dCInterp return dataList def drawPlot(x, y): plot.xlabel("Temp") plot.ylabel("Entalphy") plot.plot(x, y) plot.show() if (__name__ == "__main__"): filename = "dane.txt" dataFolderPath = "resources/" path = dataFolderPath + filename dataList = loader.load(path) dataList = interpolate(dataList) resultList = calculateE(dataList[0], dataList[1]) p = Process(target=drawPlot, args=(dataList[0], resultList)) p.start() for x in range(len(dataList[0])): print("Temp: {}\tdC: {}\t Result: {}".format(dataList[0][x], dataList[1][x], resultList[x])) p.join()
import pandas as pd import numpy as np import os import loadData as ld dir_path = ld.dir_path train = ld.load('train.csv') userFeatures = ld.load('user.csv') data = pd.merge(train.head, userFeatures, on=['userID'], how='left') print data.head(10) #data.to_csv(r'data.csv', encoding='gbk')
import loadData as load import pandas as pd from sklearn import linear_model as lin import numpy as np traincsv = load.load('train100.csv') reg = linear_model.LinearRegression()
from keras.models import load_model from keras.utils import np_utils from loadData import load X_train, y_train, X_test, y_test = load() model = load_model("my_model.h5") score = model.predict(X_test) c = 0 for i in range(10000): pos = 0 maxEle = -1.00 for j in range(len(score[i])): if(score[i][j] > maxEle): maxEle = score[i][j] pos = j if(pos == y_test[i]): c += 1 print((c / 10000) * 100)
# setup correct name args.save_name = args.sampling + "_" + str(args.no_lines) + "lines_" + str( args.seed) + "seed" if args.Pineda == True: args.save_name += "_Pineda" # set up the gpu args.device = cudaDeviceChecker.device(args) # put a limit on cpu resources used by pytorch torch.set_num_threads(8) torch.random.manual_seed(args.seed) # load data _, _, dataloader_test = loadData.load(args, only_test=True) # create network depending on the type of sampling performed if args.sampling in ["random_uniform", "low_pass", "VDS", "GMS"]: Network = myModel.fixedMask(args) if args.sampling == "LOUPE": Network = myModel.LOUPEMask(args) if args.sampling == "DPS": Network = myModel.DPSMask(args) if args.sampling == "ADPS" and args.Pineda == False: Network = myModel.ADPSMask(args) if args.sampling == "ADPS" and args.Pineda == True: Network = myModel.ADPSMask_legacy(args) Network = Network.to(args.device)
mode = 'rgb' else: mode = 'opt' model = Inception_Inflated3d(input_shape=input_shape, dropout_prob=0.5, data_format=args.data_format,mode=mode, nclass=args.nclass ) model.summary() print("Number of layer in model : ", len(model.layers)) model.compile(loss=categorical_crossentropy, optimizer=Adam(), metrics=['accuracy']) #-------------------------------------------LOAD DATA TO TRAINNING----------------------------------------- print("[INFOR] : Starting loading data form disk...........") # color: True RGB # color: False OPT Flow RGB from loadData import load (X_train, y_train, X_test, y_test) = load(mode = 'opt') print("[INFOR] : Loading Done !") from sklearn.preprocessing import LabelBinarizer label_binary = LabelBinarizer() y_train = label_binary.fit_transform(y_train) print(label_binary.classes_) y_train = np.asanyarray(y_train) y_test = label_binary.transform(y_test) y_test = np.asanyarray(y_test) # #------------------------------------------TRAINNING-------------------------------------------------------
args.no_pixels = int(28**2 * args.percentage / 100) # setup correct name args.save_name = args.sampling + "_" + str( args.percentage) + "percent_" + str(args.seed) + "seed" # set up the gpu args.device = cudaDeviceChecker.device(args) # put a limit on cpu resources used by pytorch torch.set_num_threads(8) torch.random.manual_seed(args.seed) # load data train_loader, val_loader, test_loader = loadData.load(args) # %% create network depending on the type of sampling performed Network = myModel.Network(args) Network = Network.to(args.device) # optimizers if args.sampling == 'DPS': optimizer = optim.Adam([ { 'params': Network.f1.parameters(), 'lr': args.learning_rate }, { 'params': Network.f2.parameters(), 'lr': args.learning_rate
import matplotlib.pyplot as plt from scipy.io import loadmat, savemat import numpy as np from scipy import signal import pywt import umap from sklearn.cluster import DBSCAN, KMeans import copy from tslearn.preprocessing import TimeSeriesScalerMeanVariance, TimeSeriesResampler import sys sys.path.insert(1, '../') import loadData y, dates = loadData.load() eps = 24.5 min_samples = 27 sampling_rate = 1.5 start = 400 end = 1500 array = [] for i in range(151): x = y[i][0] x = x[2000:4000] x = x[start:end:1] array.append(x) X_train = np.array(array) X_train = TimeSeriesScalerMeanVariance().fit_transform(X_train[:151])