コード例 #1
0
def character_classification():
    print('Loading data...')
    x, y = load_data_chars()
    print('Processing data..')
    print('Training data shape: ', x.shape)
    print('Test data shape: ', y.shape)
    plots.plot_filters(x[0])
    SVM.svm(x, y)
    Naive_Bayes.naive_bayes(x, y)
    KNN.knn(x, y)
    CNN.fit_cnn(x, y, trials=1, network_type='simple')
コード例 #2
0
ファイル: plots.py プロジェクト: sn00tdogg/gangsta_project
    ax[0, 0].axis('off')
    ax[0, 0].set_title('Image', fontsize=10)

    ax[0, 1].imshow(add_edge_detection_filter(img), cmap='gray')
    ax[0, 1].axis('off')
    ax[0, 1].set_title('Edge detection filter', fontsize=10)

    ax[0, 2].imshow(add_otsu_filter(img), cmap='gray')
    ax[0, 2].axis('off')
    ax[0, 2].set_title('Otsu filter', fontsize=10)

    ax[1, 0].imshow(add_gaussian_filter(img), cmap='gray')
    ax[1, 0].axis('off')
    ax[1, 0].set_title('Gaussian filter', fontsize=10)

    ax[1, 1].imshow(add_bilateral_filter(img), cmap='gray')
    ax[1, 1].axis('off')
    ax[1, 1].set_title('Bilateral filter', fontsize=10)

    ax[1, 2].imshow(add_median_filter(img), cmap='gray')
    ax[1, 2].axis('off')
    ax[1, 2].set_title('Median filter', fontsize=10)

    fig.tight_layout()
    plt.show()


if __name__ == '__main__':
    x, y = load_data_chars()
    plot_filters(x[2])
コード例 #3
0
ファイル: CNN.py プロジェクト: sn00tdogg/gangsta_project
    print('=== Convolution Neural Network ===')
    test_accuracy = np.zeros(trials)
    running_time = np.zeros(trials)
    x = scale_input(x)
    x = grey_scale(x)
    x = add_dimension(x)
    x, y = add_pictures_without_chars(x, y)
    y = to_categorical(y, int(np.max(y) + 1))
    for i in range(trials):
        print('Training network ', i + 1)
        start = time.time()
        random_state = 100 + i
        x_train, x_test, y_train, y_test = train_test_split(
            x, y, test_size=0.2, random_state=random_state, stratify=y)
        network = CNN(num_classes=len(y[0]),
                      sample=x_train[0],
                      network_type=network_type)
        network.train_generator(x_train, y_train, model_weights)
        test_accuracy[i] = network.test(x_test, y_test, model_weights)
        running_time[i] = time.time() - start
        print('Running time: ', running_time[i])
    print('Average test accuracy over ', trials, ' trials: ',
          np.mean(test_accuracy))
    print('Average running time over ', trials, ' trials: ',
          np.mean(running_time))


if __name__ == "__main__":
    img, target = load_data_chars()
    fit_cnn(img, target, trials=1)