コード例 #1
0
ファイル: eval_test.py プロジェクト: efvaldez1/cs282project
	def __init__(self):
		# load the trained model
		self.model = load_model.get_model('')

		self.model.compile(loss='categorical_crossentropy',
		              optimizer='adadelta',
		              metrics=['accuracy'])
コード例 #2
0
ファイル: predict.py プロジェクト: bachtn/twitter_analysis
def main(argv):
    emot_dic = {"anger":0, "joy":1, "sadness":2, "fear":3}

    x = tokenize(argv[0])

    emot = np.array([0, 0, 0, 0])
    emot[emot_dic[argv[1]]] = 1

    model = get_model("model.h5")

    out = model.predict([x.reshape((1, 50, 1)), emot.reshape((1, 4))])[0]

    print(argv[1], ":",  np.argmax(out))
コード例 #3
0
def main(argv):
    emot_dic = {"anger": 0, "joy": 1, "sadness": 2, "fear": 3}

    model = get_model("model.h5")

    for s in ["anger", "joy", "sadness", "fear"]:

        df = pd.read_csv(argv[0],
                         sep='\t',
                         header=None,
                         encoding='utf-8',
                         quoting=3)
        df.columns = ['id', 'text', 'polarity', 'class']

        df = df[df["polarity"] == s]

        test = np.array(df['text'])
        test_type = np.array(df["polarity"])

        X = []
        for x in test:
            X.append(tokenize(x))
        X = np.array(X)

        emot = np.zeros((len(test), 4))
        for x in range(len(test_type)):
            emot[x, emot_dic[test_type[x]]] = 1

        out = model.predict(
            [X.reshape((len(test), 50, 1)),
             emot.reshape((len(test), 4))])

        y_ = np.array(df["class"])
        y = np.array([int(x[0]) for x in y_])

        acc = np.count_nonzero(y == out.argmax(axis=1)) / float(
            out.argmax(axis=1).shape[0])

        print(s, acc)

        df["class"] = out.argmax(axis=1)

        df.to_csv("EI-oc_en_" + s + "_pred.txt",
                  sep='\t',
                  header=None,
                  index=None)
コード例 #4
0
    X_test = X_test.reshape(X_test.shape[0], 1, img_rows, img_cols)
    input_shape = (1, img_rows, img_cols)
else:
    X_train = X_train.reshape(X_train.shape[0], img_rows, img_cols, 1)
    X_test = X_test.reshape(X_test.shape[0], img_rows, img_cols, 1)
    input_shape = (img_rows, img_cols, 1)

X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')

model = load_model.get_model(input_shape)

model.compile(loss='categorical_crossentropy',
              optimizer='adadelta',
              metrics=['accuracy'])

filepath = load_model.get_weights_file()
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')
callbacks_list = [checkpoint]

model.fit(X_train, Y_train, batch_size=batch_size, epochs=nb_epoch, verbose=1, validation_data=(X_test,Y_test), callbacks=callbacks_list)

score = model.evaluate(X_test, Y_test, verbose=0)
predict = model.predict(X_test,batch_size = batch_size,verbose = 0)

# calculate the accuracy with the test data