コード例 #1
0
ファイル: main.py プロジェクト: chrinide/kaggle_otto_group
def modif_submission(path_sub="best_sub.csv"):
    """
    """
    arr = np.loadtxt(path_sub, skiprows=1, delimiter=",", usecols=range(1, 10))
    pdb.set_trace()
    sub = np.where(arr > 0.5, arr + 0.0001, arr - 0.0001)
    sub = np.where(sub < 0, 0, sub)
    sub = np.where(sub > 1, 1, sub)
    make_submission(sub)
コード例 #2
0
ファイル: main.py プロジェクト: chrinide/kaggle_otto_group
def main(data_folder="./data", path_submission="sub.csv"):
    """
    """
    #    pdb.set_trace()
    #    Load train, test and sample submission
    #    print 'Loading data...'
    #    X_train, y_train, X_valid, y_valid, X_test = load_train_valid_test(folder=data_folder)
    #    y_train = y_train.astype(np.int32)
    #    y_valid = y_valid.astype(np.int32)
    #
    #    #Data normalization
    #    print 'Normalizing data...'
    #    X_train, X_valid, X_test = normalize(X_train, X_valid, X_test,
    #                                             normalizer='StandardScaler')
    #    #Feature engineering
    #    print 'Feature engineering...'
    ##    X_train, X_test = feat_eng(X_train, X_test)
    ##
    ##    #Applying classifiers...
    #    print 'Classifying...'
    #    num_features = X_train.shape[1]
    #    num_classes = len(np.unique(y_train))

    #    clf = Clf_nolearn_simple(num_features, num_classes)
    #    clf = Clf_nolearn_2_levels(num_features, num_classes)
    #    clf = Clf_nolearn_simple_play(num_features, num_classes)
    #    clf = Clf_xgboost_simple(num_classes)
    #    clf = Clf_xgboost_2_levels(num_classes)
    #    clf = Clf_xgboost_split(num_classes)
    #    clf = Clf_rf_simple()
    #    clf = Clf_clust_simple()
    ###
    #    clf.process(X_train, y_train, X_valid, y_valid, X_test,
    #                validating=True, testing=True, file_name=None, verbose=1)
    ####
    #    print 'Ensembling...'
    ens = Ens_log_reg()
    ####    ens = Ens_opt_cal()
    y_pred = ens.process()
    ######
    make_submission(y_pred)