def plot_power_spectrum_grid(ps_data_dir, output_dir, ps_data=None, scales='large', sim_data_sets=None, black_background=False, system=None, high_z_only=False, plot_ps_normalized=False): if system == 'Lux' or system == 'Summit': matplotlib.use('Agg') import matplotlib.pyplot as plt fig_height = 5 fig_width = 8 fig_dpi = 300 if high_z_only: fig_height = 8 label_size = 18 figure_text_size = 18 legend_font_size = 16 tick_label_size_major = 15 tick_label_size_minor = 13 tick_size_major = 5 tick_size_minor = 3 tick_width_major = 1.5 tick_width_minor = 1 border_width = 1 if system == 'Lux': prop = matplotlib.font_manager.FontProperties(fname=os.path.join( '/home/brvillas/fonts', "Helvetica.ttf"), size=12) if system == 'Shamrock': prop = matplotlib.font_manager.FontProperties(fname=os.path.join( '/home/bruno/fonts/Helvetica', "Helvetica.ttf"), size=12) dir_boss = ps_data_dir + 'data_power_spectrum_boss/' data_filename = dir_boss + 'data_table.py' data_boss = load_data_boss(data_filename) data_z_boss = data_boss['z_vals'] data_filename = ps_data_dir + 'data_power_spectrum_walther_2019/data_table.txt' data_walther = load_power_spectrum_table(data_filename) data_z_w = data_walther['z_vals'] dir_data_boera = ps_data_dir + 'data_power_spectrum_boera_2019/' data_boera = load_tabulated_data_boera(dir_data_boera) data_z_b = data_boera['z_vals'] data_dir_viel = ps_data_dir + 'data_power_spectrum_viel_2013/' data_viel = load_tabulated_data_viel(data_dir_viel) data_z_v = data_viel['z_vals'] dir_irsic = ps_data_dir + 'data_power_spectrum_irsic_2017/' data_filename = dir_irsic + 'data_table.py' data_irsic = load_data_irsic(data_filename) data_z_irsic = data_irsic['z_vals'] z_vals_small_scale = [ 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 4.2, 4.6, 5.0, 5.4 ] z_vals_large_scale = [ 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.4 ] z_vals_middle_scale = [3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.4] z_vals_small_scale_walther = [ 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, ] z_vals_all = [ 2.2, 2.4, 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, 4.2, 4.4, ] z_vals_small_highz = [ 4.2, 4.6, 5.0, ] z_high = [5.0, 5.4] z_large_middle = [ 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, ] z_vals_large_reduced = [ 2.6, 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, 4.0, ] z_vals_small_reduced = [4.2, 4.6, 5.0] if scales == 'large': z_vals = z_vals_large_scale elif scales == 'small': z_vals = z_vals_small_scale elif scales == 'middle': z_vals = z_vals_middle_scale elif scales == 'small_walther': z_vals = z_vals_small_scale_walther elif scales == 'small_highz': z_vals = z_vals_small_highz elif scales == 'all': z_vals = z_vals_all elif scales == 'large_middle': z_vals = z_large_middle elif scales == 'large_reduced': z_vals = z_vals_large_reduced elif scales == 'small_reduced': z_vals = z_vals_small_reduced else: print("ERROR: Scales = large, small of middle ") return if high_z_only: z_vals = z_high nrows = 3 ncols = 4 if scales == 'small_walther': nrows = 2 if high_z_only: nrows, ncols = 1, 2 if scales == 'large_middle': ncols, nrows = 3, 2 if scales == 'middle': nrows = 2 flags = np.zeros((nrows, ncols)) if scales == 'small_highz': nrows, ncols = 1, 3 if scales == 'large_reduced': nrows, ncols = 2, 4 if scales == 'small_reduced': nrows, ncols = 1, 3 plot_boss, plot_walther, plot_boera, plot_viel, plot_irsic = False, False, False, False, False if scales == 'large': plot_boss = True if scales == 'all': plot_boss, plot_boera, plot_irsic = True, True, True if scales == 'middle': plot_boss, plot_irsic = True, True, if scales == 'small_highz': plot_boss, plot_boera = True, True, if scales == 'large_middle': plot_boss, plot_irsic = True, True if scales == 'large_reduced': plot_boss = True if scales == 'small_reduced': plot_boera = True fig_height *= 1.4 fig, ax_l = plt.subplots(nrows=nrows, ncols=ncols, figsize=(2 * fig_width, fig_height * nrows)) plt.subplots_adjust(hspace=0.02, wspace=0.02) c_pchw18 = pylab.cm.viridis(.7) c_hm12 = pylab.cm.cool(.3) c_boss = pylab.cm.viridis(.3) c_walther = pylab.cm.viridis(.3) c_viel = 'C1' c_boera = pylab.cm.Purples(.7) c_irsic = pylab.cm.Purples(.7) text_color = 'black' color_line = c_pchw18 if scales == 'middle': c_walther = 'C3' text_color = 'black' if black_background: text_color = 'white' c_boss = 'C1' c_irsic = 'C9' c_boera = yellows[0] blue = blues[4] color_line = blue for index, current_z in enumerate(z_vals): indx_j = index % ncols indx_i = index // ncols if nrows > 1: ax = ax_l[indx_i][indx_j] else: ax = ax_l[indx_j] if scales == 'middle': flags[indx_i, indx_j] = 1 if ps_data: for sim_id in ps_data: data_sim = ps_data[sim_id] label = data_sim['label'] sim_z_vals = data_sim['z_vals'] diff = np.abs(sim_z_vals - current_z) diff_min = diff.min() index = np.where(diff == diff_min)[0][0] data = data_sim[index] k = data['k_vals'] ps = data['ps_mean'] delta = ps * k / np.pi if current_z == 4.6: delta *= 1.1 if current_z == 5.0: delta *= 1.1 ax.plot(k, delta, linewidth=3, label=label, zorder=1, c=color_line) if sim_data_sets: for sim_data in sim_data_sets: # sim_z_vals = sim_data['z'] # diff = np.abs( sim_z_vals - current_z ) # diff_min = diff.min() # index = np.where( diff == diff_min )[0][0] # # print( index ) # if diff_min < 0.08: # k = sim_data['ps_kvals'][index] # ps = sim_data['ps_mean'][index] # delta = ps * k / np.pi # ax.plot( k, delta, linewidth=3, label=sim_data['plot_label'], zorder=1 ) # # ax.plot( k, delta, c=color_line, linewidth=3, label=sim_data['plot_label'] ) # if plot_ps_normalized: ps_data = sim_data['power_spectrum_normalized'] name = ps_data['normalization_key'] else: ps_data = sim_data['power_spectrum'] sim_z_vals = ps_data['z'] diff = np.abs(sim_z_vals - current_z) diff_min = diff.min() index = np.where(diff == diff_min)[0][0] # print( index ) if diff_min < 0.08: k = ps_data['k_vals'][index] ps = ps_data['ps_mean'][index] delta = ps * k / np.pi ax.plot(k, delta, linewidth=3, label=sim_data['plot_label'], zorder=1) # ax.plot( k, delta, c=color_line, linewidth=3, label=sim_data['plot_label'] ) text_pos_x = 0.85 if scales == 'large_reduced': text_pos_x = 0.15 ax.text(text_pos_x, 0.95, r'$z={0:.1f}$'.format(current_z), horizontalalignment='center', verticalalignment='center', transform=ax.transAxes, fontsize=figure_text_size, color=text_color) if plot_boss: # Add Boss data z_diff = np.abs(data_z_boss - current_z) diff_min = z_diff.min() if diff_min < 1e-1: data_index = np.where(z_diff == diff_min)[0][0] data_z_local = data_z_boss[data_index] data_k = data_boss[data_index]['k_vals'] data_delta_power = data_boss[data_index]['delta_power'] data_delta_power_error = data_boss[data_index][ 'delta_power_error'] label_boss = 'eBOSS (2019)' d_boss = ax.errorbar(data_k, data_delta_power, yerr=data_delta_power_error, fmt='o', c=c_boss, label=label_boss, zorder=2) if plot_walther: # Add Walther data z_diff = np.abs(data_z_w - current_z) diff_min = z_diff.min() if diff_min < 1e-1: data_index = np.where(z_diff == diff_min)[0][0] data_z_local = data_z_w[data_index] data_k = data_walther[data_index]['k_vals'] data_delta_power = data_walther[data_index]['delta_power'] data_delta_power_error = data_walther[data_index][ 'delta_power_error'] label_walther = 'Walther et al. (2018)' d_walther = ax.errorbar(data_k, data_delta_power, yerr=data_delta_power_error, fmt='o', c=c_walther, label=label_walther, zorder=2) # Add Irsic data if plot_irsic: z_diff = np.abs(data_z_irsic - current_z) diff_min = z_diff.min() if diff_min < 1e-1: data_index = np.where(z_diff == diff_min)[0][0] data_z_local = data_z_irsic[data_index] data_k = data_irsic[data_index]['k_vals'] data_delta_power = data_irsic[data_index]['delta_power'] data_delta_power_error = data_irsic[data_index][ 'delta_power_error'] label_irsic = 'Irsic et al. (2017)' d_irsic = ax.errorbar(data_k, data_delta_power, yerr=data_delta_power_error, fmt='o', c=c_irsic, label=label_irsic, zorder=2) if plot_boera: # Add Boera data z_diff = np.abs(data_z_b - current_z) diff_min = z_diff.min() if diff_min < 1e-1: data_index = np.where(z_diff == diff_min)[0][0] data_z_local = data_z_b[data_index] data_k = data_boera[data_index]['k_vals'] data_delta_power = data_boera[data_index]['delta_power'] data_delta_power_error = data_boera[data_index][ 'delta_power_error'] label_boera = 'Boera et al. (2019)' d_boera = ax.errorbar(data_k, data_delta_power, yerr=data_delta_power_error, fmt='o', c=c_boera, label=label_boera, zorder=2) if plot_viel: # Add Viel data z_diff = np.abs(data_z_v - current_z) diff_min = z_diff.min() if diff_min < 1e-1: data_index = np.where(z_diff == diff_min)[0][0] data_z_local = data_z_v[data_index] data_k = data_viel[data_index]['k_vals'] data_delta_power = data_viel[data_index]['delta_power'] data_delta_power_error = data_viel[data_index][ 'delta_power_error'] label_viel = 'Viel et al. (2013)' d_viel = ax.errorbar(data_k, data_delta_power, yerr=data_delta_power_error, fmt='o', c=c_viel, label=label_viel, zorder=2) legend_loc = 3 if indx_i == nrows - 1 and nrows != 2: legend_loc = 2 if scales == 'large': legend_loc = 2 if scales == 'middle': legend_loc = 2 if scales == 'small_highz': legend_loc = 3 if scales == 'large_middle': legend_loc = 2 if scales == 'large_reduced': legend_loc = 4 label_bars = r'1$\sigma$ skewers $P\,(\Delta_F^2)$' add_legend = False if indx_j == 0: add_legend = True # if scales == 'middle' and indx_i == nrows-1 and indx_j == ncols-1: add_legend = True if add_legend: # leg = ax.legend( loc=legend_loc, frameon=False, fontsize=12) leg = ax.legend(loc=legend_loc, frameon=False, prop=prop) for text in leg.get_texts(): plt.setp(text, color=text_color) x_min, x_max = 4e-3, 2.5e-1 if indx_i == 0: y_min, y_max = 1e-3, 9e-2 if indx_i == 1: y_min, y_max = 5e-3, 2e-1 if indx_i == 2: y_min, y_max = 5e-2, 3 if scales == 'large': x_min, x_max = 2e-3, 2.3e-2 if indx_i == 0: y_min, y_max = 1e-2, 1.2e-1 if indx_i == 1: y_min, y_max = 2e-2, 2.5e-1 if indx_i == 2: y_min, y_max = 5e-2, 7e-1 if scales == 'middle': x_min, x_max = 2e-3, 7e-2 if indx_i == 0: y_min, y_max = 1.8e-2, 2.5e-1 if indx_i == 1: y_min, y_max = 5e-2, 7e-1 if scales == 'all': x_min, x_max = 4e-3, 2.5e-1 if indx_i == 0: y_min, y_max = 1e-3, 9e-2 if indx_i == 1: y_min, y_max = 5e-3, 2e-1 if indx_i == 2: y_min, y_max = 5e-2, 3 if scales == 'small_highz': x_min, x_max = 2e-3, 3e-1 if indx_i == 0: y_min, y_max = 5e-3, 1e0 if scales == 'large_middle': x_min, x_max = 2e-3, 7e-2 if indx_i == 0: y_min, y_max = 2e-2, 1.5e-1 if indx_i == 1: y_min, y_max = 4e-2, 3.5e-1 if scales == 'large_reduced': x_min, x_max = 2e-3, 2.5e-2 if indx_i == 0: y_min, y_max = 1.2e-2, 1.3e-1 if indx_i == 1: y_min, y_max = 2.5e-2, 4e-1 if scales == 'large_reduced': x_min, x_max = 2e-3, 2.5e-2 if indx_i == 0: y_min, y_max = 1.2e-2, 1.3e-1 if indx_i == 1: y_min, y_max = 2.5e-2, 4e-1 if scales == 'small_reduced': x_min, x_max = 4e-3, 2e-1 if indx_i == 0: y_min, y_max = 4e-2, 7e-1 if high_z_only: y_min, y_max = 5e-2, 3 ax.set_xlim(x_min, x_max) ax.set_ylim(y_min, y_max) ax.set_xscale('log') ax.set_yscale('log') [sp.set_linewidth(border_width) for sp in ax.spines.values()] ax.tick_params(axis='both', which='major', color=text_color, labelcolor=text_color, labelsize=tick_label_size_major, size=tick_size_major, width=tick_width_major, direction='in') ax.tick_params(axis='both', which='minor', color=text_color, labelcolor=text_color, labelsize=tick_label_size_minor, size=tick_size_minor, width=tick_width_minor, direction='in') if indx_i != nrows - 1: ax.set_xticklabels([]) if indx_j > 0: ax.set_yticklabels([]) ax.tick_params(axis='y', which='minor', labelsize=0) if indx_j == 0: ax.set_ylabel(r' $\Delta_F^2(k)$', fontsize=label_size, color=text_color) if indx_i == nrows - 1: ax.set_xlabel(r'$ k \,\,\, [\mathrm{s}\,\mathrm{km}^{-1}] $', fontsize=label_size, color=text_color) if black_background: fig.patch.set_facecolor('black') ax.set_facecolor('k') [ spine.set_edgecolor(text_color) for spine in list(ax.spines.values()) ] if scales == 'middle': for i in range(nrows): for j in range(ncols): if not flags[i, j]: ax = ax_l[i][j].axis('off') fileName = output_dir + f'flux_ps_grid_{scales}' if plot_ps_normalized: fileName += f'_{name}' if high_z_only: fileName += '_highZ' fileName += '.png' # fileName += '.pdf' fig.savefig(fileName, pad_inches=0.1, bbox_inches='tight', dpi=fig_dpi, facecolor=fig.get_facecolor()) print('Saved Image: ', fileName)
def Get_Comparable_Power_Spectrum(ps_data_dir, z_min, z_max, data_sets, ps_range, log_ps=False, rescaled_walther=False, rescale_walter_file=None): print(f'Loading P(k) Data:') dir_boss = ps_data_dir + 'data_power_spectrum_boss/' data_filename = dir_boss + 'data_table.py' data_boss = load_data_boss(data_filename) dir_irsic = ps_data_dir + 'data_power_spectrum_irsic_2017/' data_filename = dir_irsic + 'data_table.py' data_irsic = load_data_irsic(data_filename) data_filename = ps_data_dir + 'data_power_spectrum_walther_2019/data_table.txt' data_walther = load_power_spectrum_table(data_filename) dir_data_boera = ps_data_dir + 'data_power_spectrum_boera_2019/' data_boera = load_tabulated_data_boera(dir_data_boera) data_dir_viel = ps_data_dir + 'data_power_spectrum_viel_2013/' data_viel = load_tabulated_data_viel(data_dir_viel) data_dir = { 'Boss': data_boss, 'Walther': data_walther, 'Boera': data_boera, 'Viel': data_viel, 'Irsic': data_irsic } data_kvals, data_ps, data_ps_sigma, data_indices, data_z = [], [], [], [], [] log_data_ps, log_data_ps_sigma = [], [] sim_z, sim_kmin, sim_kmax = ps_range['z'], ps_range['k_min'], ps_range[ 'k_max'] ps_data = {} data_id = 0 for data_index, data_name in enumerate(data_sets): print(f' Loading P(k) Data: {data_name}') data_set = data_dir[data_name] keys = data_set.keys() n_indices = len(keys) - 1 if data_name == 'Walther': if rescaled_walther: print( f" Loading Walther rescale values: {rescale_walter_file}") rescale_walter_alphas = Load_Pickle_Directory( rescale_walter_file) for index in range(n_indices): data = data_set[index] z = data['z'] if z >= z_min and z <= z_max: diff = np.abs(sim_z - z) id_min = np.where(diff == diff.min())[0][0] z_sim = sim_z[id_min] kmin = sim_kmin[id_min] kmax = sim_kmax[id_min] k_vals = data['k_vals'] k_indices = np.where((k_vals >= kmin) & (k_vals <= kmax)) k_vals = k_vals[k_indices] delta_ps = data['delta_power'][k_indices] delta_ps_sigma = data['delta_power_error'][k_indices] log_delta_ps = np.log(delta_ps) log_delta_ps_sigma = 1 / delta_ps * delta_ps_sigma if data_name == 'Walther' and rescaled_walther: rescale_z = rescale_walter_alphas[index]['z'] rescale_alpha = rescale_walter_alphas[index]['alpha'] print( f' Rescaling z={rescale_z:.1f} alpha={rescale_alpha:.3f} ' ) delta_ps *= rescale_alpha ps_data[data_id] = { 'z': z, 'k_vals': k_vals, 'delta_ps': delta_ps, 'delta_ps_sigma': delta_ps_sigma } data_z.append(z) data_kvals.append(k_vals) data_ps.append(delta_ps) data_ps_sigma.append(delta_ps_sigma) log_data_ps.append(log_delta_ps) log_data_ps_sigma.append(log_delta_ps_sigma) data_id += 1 k_vals_all = np.concatenate(data_kvals) delta_ps_all = np.concatenate(data_ps) delta_ps_sigma_all = np.concatenate(data_ps_sigma) log_delta_ps_all = np.concatenate(log_data_ps) log_delta_ps_sigma_all = np.concatenate(log_data_ps_sigma) ps_data_out = {'P(k)': {}, 'separate': ps_data} ps_data_out['P(k)']['k_vals'] = k_vals_all if log_ps: ps_data_out['P(k)']['mean'] = log_delta_ps_all ps_data_out['P(k)']['sigma'] = log_delta_ps_sigma_all else: ps_data_out['P(k)']['mean'] = delta_ps_all ps_data_out['P(k)']['sigma'] = delta_ps_sigma_all n_data_points = len(k_vals_all) print(f' N data points: {n_data_points}') return ps_data_out
dir_boss = 'data/data_power_spectrum_boss/' data_filename = dir_boss + 'data_table.py' data_boss = load_data_boss(data_filename) data_z_boss = data_boss['z_vals'] data_filename = 'data/data_power_spectrum_walther_2019/data_table.txt' data_walther = load_power_spectrum_table(data_filename) data_z_w = data_walther['z_vals'] dir_data_boera = 'data/data_power_spectrum_boera_2019/' data_boera = load_tabulated_data_boera(dir_data_boera) data_z_b = data_boera['z_vals'] data_dir_viel = 'data/data_power_spectrum_viel_2013/' data_viel = load_tabulated_data_viel(data_dir_viel) data_z_v = data_viel['z_vals'] snapshots_indices = [ 83, 90, 96, 102, 119, 124, 130, 136, 143, 151, 159, 169,
def Get_Comparable_Power_Spectrum(ps_data_dir, z_min, z_max, data_sets, ps_range): print(f'Loading P(k) Data:') dir_boss = ps_data_dir + 'data_power_spectrum_boss/' data_filename = dir_boss + 'data_table.py' data_boss = load_data_boss(data_filename) data_filename = ps_data_dir + 'data_power_spectrum_walther_2019/data_table.txt' data_walther = load_power_spectrum_table(data_filename) dir_data_boera = ps_data_dir + 'data_power_spectrum_boera_2019/' data_boera = load_tabulated_data_boera(dir_data_boera) data_dir_viel = ps_data_dir + 'data_power_spectrum_viel_2013/' data_viel = load_tabulated_data_viel(data_dir_viel) data_dir = { 'Boss': data_boss, 'Walther': data_walther, 'Boera': data_boera, 'Viel': data_viel } data_kvals, data_ps, data_ps_sigma, data_indices, data_z = [], [], [], [], [] sim_z, sim_kmin, sim_kmax = ps_range['z'], ps_range['k_min'], ps_range[ 'k_max'] ps_data = {} data_id = 0 for data_index, data_name in enumerate(data_sets): print(f' Loading P(k) Data: {data_name}') data_set = data_dir[data_name] keys = data_set.keys() n_indices = len(keys) - 1 for index in range(n_indices): data = data_set[index] z = data['z'] if z >= z_min and z <= z_max: diff = np.abs(sim_z - z) id_min = np.where(diff == diff.min())[0][0] z_sim = sim_z[id_min] # print( f'data_z: {z:.1f} sim_z: {z_sim:.1f}') kmin = sim_kmin[id_min] kmax = sim_kmax[id_min] k_vals = data['k_vals'] k_indices = np.where((k_vals >= kmin) & (k_vals <= kmax)) k_vals = k_vals[k_indices] delta_ps = data['delta_power'][k_indices] delta_ps_sigma = data['delta_power_error'][k_indices] ps_data[data_id] = { 'z': z, 'k_vals': k_vals, 'delta_ps': delta_ps, 'delta_ps_sigma': delta_ps_sigma } data_z.append(z) data_kvals.append(k_vals) data_ps.append(delta_ps) data_ps_sigma.append(delta_ps_sigma) data_id += 1 k_vals_all = np.concatenate(data_kvals) delta_ps_all = np.concatenate(data_ps) delta_ps_sigma_all = np.concatenate(data_ps_sigma) ps_data_out = {'P(k)': {}, 'separate': ps_data} ps_data_out['P(k)']['k_vals'] = k_vals_all ps_data_out['P(k)']['mean'] = delta_ps_all ps_data_out['P(k)']['sigma'] = delta_ps_sigma_all n_data_points = len(k_vals_all) print(f' N data points: {n_data_points}') return ps_data_out