コード例 #1
0
def test_knn_graph_sparse():
    k = 3
    n_pca = 20
    pca = TruncatedSVD(n_pca, random_state=42).fit(data)
    data_nu = pca.transform(data)
    pdx = squareform(pdist(data_nu, metric="euclidean"))
    knn_dist = np.partition(pdx, k, axis=1)[:, :k]
    epsilon = np.max(knn_dist, axis=1)
    K = np.empty_like(pdx)
    for i in range(len(pdx)):
        K[i, pdx[i, :] <= epsilon[i]] = 1
        K[i, pdx[i, :] > epsilon[i]] = 0

    K = K + K.T
    W = np.divide(K, 2)
    np.fill_diagonal(W, 0)
    G = pygsp.graphs.Graph(W)
    G2 = build_graph(
        sp.coo_matrix(data),
        n_pca=n_pca,
        decay=None,
        knn=k - 1,
        random_state=42,
        use_pygsp=True,
    )
    assert G.N == G2.N
    np.testing.assert_allclose(G2.W.toarray(), G.W.toarray())
    assert isinstance(G2, graphtools.graphs.kNNGraph)
コード例 #2
0
def test_knn_graph_sparse_no_pca():
    build_graph(
        sp.coo_matrix(data),
        n_pca=None,  # n_pca,
        decay=10,
        knn=3,
        thresh=1e-4,
        random_state=42,
        use_pygsp=True,
    )
コード例 #3
0
def test_knn_graph_sparse_no_pca():
    with assert_warns_message(
            UserWarning,
            "cannot use tree with sparse input: using brute force"):
        build_graph(
            sp.coo_matrix(data),
            n_pca=None,  # n_pca,
            decay=10,
            knn=3,
            thresh=1e-4,
            random_state=42,
            use_pygsp=True,
        )
コード例 #4
0
ファイル: test_exact.py プロジェクト: stanleyn/graphtools
def test_truncated_exact_graph_sparse():
    k = 3
    a = 13
    n_pca = 20
    thresh = 1e-4
    data_small = data[np.random.choice(len(data),
                                       len(data) // 2,
                                       replace=False)]
    pca = TruncatedSVD(n_pca, random_state=42).fit(data_small)
    data_small_nu = pca.transform(data_small)
    pdx = squareform(pdist(data_small_nu, metric="euclidean"))
    knn_dist = np.partition(pdx, k, axis=1)[:, :k]
    epsilon = np.max(knn_dist, axis=1)
    weighted_pdx = (pdx.T / epsilon).T
    K = np.exp(-1 * weighted_pdx**a)
    K[K < thresh] = 0
    W = K + K.T
    W = np.divide(W, 2)
    np.fill_diagonal(W, 0)
    G = pygsp.graphs.Graph(W)
    G2 = build_graph(
        sp.coo_matrix(data_small),
        thresh=thresh,
        graphtype="exact",
        n_pca=n_pca,
        decay=a,
        knn=k - 1,
        random_state=42,
        use_pygsp=True,
    )
    assert G.N == G2.N
    np.testing.assert_allclose(G2.W.toarray(), G.W.toarray())
    assert isinstance(G2, graphtools.graphs.TraditionalGraph)
    G2 = build_graph(
        sp.bsr_matrix(pdx),
        n_pca=None,
        precomputed="distance",
        thresh=thresh,
        decay=a,
        knn=k - 1,
        random_state=42,
        use_pygsp=True,
    )
    assert G.N == G2.N
    np.testing.assert_equal(G.dw, G2.dw)
    assert (G.W != G2.W).nnz == 0
    assert (G2.W != G.W).sum() == 0
    assert isinstance(G2, graphtools.graphs.TraditionalGraph)
    G2 = build_graph(
        sp.lil_matrix(K),
        n_pca=None,
        precomputed="affinity",
        thresh=thresh,
        random_state=42,
        use_pygsp=True,
    )
    assert G.N == G2.N
    np.testing.assert_equal(G.dw, G2.dw)
    assert (G.W != G2.W).nnz == 0
    assert (G2.W != G.W).sum() == 0
    assert isinstance(G2, graphtools.graphs.TraditionalGraph)
    G2 = build_graph(
        sp.dok_matrix(W),
        n_pca=None,
        precomputed="adjacency",
        random_state=42,
        use_pygsp=True,
    )
    assert G.N == G2.N
    np.testing.assert_equal(G.dw, G2.dw)
    assert (G.W != G2.W).nnz == 0
    assert (G2.W != G.W).sum() == 0
    assert isinstance(G2, graphtools.graphs.TraditionalGraph)
コード例 #5
0
ファイル: test_exact.py プロジェクト: stanleyn/graphtools
def test_exact_graph():
    k = 3
    a = 13
    n_pca = 20
    bandwidth_scale = 1.3
    data_small = data[np.random.choice(len(data),
                                       len(data) // 2,
                                       replace=False)]
    pca = PCA(n_pca, svd_solver="randomized", random_state=42).fit(data_small)
    data_small_nu = pca.transform(data_small)
    pdx = squareform(pdist(data_small_nu, metric="euclidean"))
    knn_dist = np.partition(pdx, k, axis=1)[:, :k]
    epsilon = np.max(knn_dist, axis=1) * bandwidth_scale
    weighted_pdx = (pdx.T / epsilon).T
    K = np.exp(-1 * weighted_pdx**a)
    W = K + K.T
    W = np.divide(W, 2)
    np.fill_diagonal(W, 0)
    G = pygsp.graphs.Graph(W)
    G2 = build_graph(
        data_small,
        thresh=0,
        n_pca=n_pca,
        decay=a,
        knn=k - 1,
        random_state=42,
        bandwidth_scale=bandwidth_scale,
        use_pygsp=True,
    )
    assert G.N == G2.N
    np.testing.assert_equal(G.dw, G2.dw)
    assert (G.W != G2.W).nnz == 0
    assert (G2.W != G.W).sum() == 0
    assert isinstance(G2, graphtools.graphs.TraditionalGraph)
    G2 = build_graph(
        pdx,
        n_pca=None,
        precomputed="distance",
        bandwidth_scale=bandwidth_scale,
        decay=a,
        knn=k - 1,
        random_state=42,
        use_pygsp=True,
    )
    assert G.N == G2.N
    np.testing.assert_equal(G.dw, G2.dw)
    assert (G.W != G2.W).nnz == 0
    assert (G2.W != G.W).sum() == 0
    assert isinstance(G2, graphtools.graphs.TraditionalGraph)
    G2 = build_graph(
        sp.coo_matrix(K),
        n_pca=None,
        precomputed="affinity",
        random_state=42,
        use_pygsp=True,
    )
    assert G.N == G2.N
    np.testing.assert_equal(G.dw, G2.dw)
    assert (G.W != G2.W).nnz == 0
    assert (G2.W != G.W).sum() == 0
    assert isinstance(G2, graphtools.graphs.TraditionalGraph)
    G2 = build_graph(K,
                     n_pca=None,
                     precomputed="affinity",
                     random_state=42,
                     use_pygsp=True)
    assert G.N == G2.N
    np.testing.assert_equal(G.dw, G2.dw)
    assert (G.W != G2.W).nnz == 0
    assert (G2.W != G.W).sum() == 0
    assert isinstance(G2, graphtools.graphs.TraditionalGraph)
    G2 = build_graph(W,
                     n_pca=None,
                     precomputed="adjacency",
                     random_state=42,
                     use_pygsp=True)
    assert G.N == G2.N
    np.testing.assert_equal(G.dw, G2.dw)
    assert (G.W != G2.W).nnz == 0
    assert (G2.W != G.W).sum() == 0
    assert isinstance(G2, graphtools.graphs.TraditionalGraph)
コード例 #6
0
def test_exact_graph():
    k = 3
    a = 13
    n_pca = 20
    data_small = data[np.random.choice(len(data),
                                       len(data) // 2,
                                       replace=False)]
    pca = PCA(n_pca, svd_solver='randomized', random_state=42).fit(data_small)
    data_small_nu = pca.transform(data_small)
    pdx = squareform(pdist(data_small_nu, metric='euclidean'))
    knn_dist = np.partition(pdx, k, axis=1)[:, :k]
    epsilon = np.max(knn_dist, axis=1)
    weighted_pdx = (pdx.T / epsilon).T
    K = np.exp(-1 * weighted_pdx**a)
    W = K + K.T
    W = np.divide(W, 2)
    np.fill_diagonal(W, 0)
    G = pygsp.graphs.Graph(W)
    G2 = build_graph(data_small,
                     thresh=0,
                     n_pca=n_pca,
                     decay=a,
                     knn=k,
                     random_state=42,
                     use_pygsp=True)
    assert (G.N == G2.N)
    assert (np.all(G.d == G2.d))
    assert ((G.W != G2.W).nnz == 0)
    assert ((G2.W != G.W).sum() == 0)
    assert (isinstance(G2, graphtools.graphs.TraditionalGraph))
    G2 = build_graph(pdx,
                     n_pca=None,
                     precomputed='distance',
                     decay=a,
                     knn=k,
                     random_state=42,
                     use_pygsp=True)
    assert (G.N == G2.N)
    assert (np.all(G.d == G2.d))
    assert ((G.W != G2.W).nnz == 0)
    assert ((G2.W != G.W).sum() == 0)
    assert (isinstance(G2, graphtools.graphs.TraditionalGraph))
    G2 = build_graph(sp.coo_matrix(K),
                     n_pca=None,
                     precomputed='affinity',
                     random_state=42,
                     use_pygsp=True)
    assert (G.N == G2.N)
    assert (np.all(G.d == G2.d))
    assert ((G.W != G2.W).nnz == 0)
    assert ((G2.W != G.W).sum() == 0)
    assert (isinstance(G2, graphtools.graphs.TraditionalGraph))
    G2 = build_graph(K,
                     n_pca=None,
                     precomputed='affinity',
                     random_state=42,
                     use_pygsp=True)
    assert (G.N == G2.N)
    assert (np.all(G.d == G2.d))
    assert ((G.W != G2.W).nnz == 0)
    assert ((G2.W != G.W).sum() == 0)
    assert (isinstance(G2, graphtools.graphs.TraditionalGraph))
    G2 = build_graph(W,
                     n_pca=None,
                     precomputed='adjacency',
                     random_state=42,
                     use_pygsp=True)
    assert (G.N == G2.N)
    assert (np.all(G.d == G2.d))
    assert ((G.W != G2.W).nnz == 0)
    assert ((G2.W != G.W).sum() == 0)
    assert (isinstance(G2, graphtools.graphs.TraditionalGraph))