return dataset, cfg if __name__ == "__main__": ### let's save some things ### save the images, labels, boxes for all test and train logger.info("starting.....") loader = UADetracLoader() """ images = loader.load_images(dir='/nethome/jbang36/eva_jaeho/data/ua_detrac/4_images') labels, boxes = loader.load_labels('/nethome/jbang36/eva_jaeho/data/ua_detrac/4_xml') assert(len(images) == len(boxes)) loader.save_images(name = 'uad_train_images.npy', vi_name='uad_train_vi.npy') loader.save_labels(name = 'uad_train_labels.npy') loader.save_boxes(name = 'uad_train_boxes.npy') logger.info("Saved all train data!") """ test_images = loader.load_images( dir='/nethome/jbang36/eva_jaeho/data/ua_detrac/5_images') test_labels, test_boxes = loader.load_labels( '/nethome/jbang36/eva_jaeho/data/ua_detrac/5_xml') assert (len(test_images) == len(test_boxes)) loader.save_images(name='uad_test_images.npy', vi_name='uad_test_vi.npy') loader.save_labels(name='uad_test_labels.npy') loader.save_boxes(name='uad_test_boxes.npy') logger.info("Saved all test data!")
return rec, prec, ap if __name__ == '__main__': # load net num_classes = len(labelmap) + 1 # +1 for background net = build_ssd('test', 300, num_classes) # initialize SSD net.load_state_dict(torch.load(args.trained_model)) net.eval() print('Finished loading model!') # load data loader = UADetracLoader() images = loader.load_images( dir=os.path.join(home_dir, 'data', 'ua_detrac', '5_images')) labels, boxes = loader.load_labels( dir=os.path.join(home_dir, 'data', 'ua_detrac', '5_xml')) labels = labels['vehicle'] images, labels, boxes = loader.filter_input3(images, labels, boxes) dataset = UADDetection(transform=BaseTransform(300, dataset_mean), target_transform=UADAnnotationTransform()) dataset.set_images(images) dataset.set_labels(labels) dataset.set_boxes(boxes) if args.cuda: net = net.cuda() cudnn.benchmark = True # evaluation """
def _loadSegmentedImages(self): eva_dir = config.eva_dir dir = os.path.join(eva_dir, 'eva_storage', 'tmp_data', 'segmented_images.npy') if os.path.exists(dir): self.segmented_images = np.load(dir) else: print("path", dir, "does not exist..") if __name__ == "__main__": loader = UADetracLoader() images = loader.load_images() labels = loader.load_labels() boxes = loader.load_boxes() video_start_indices = loader.get_video_start_indices() #images loaded as 300x300 - prepare the images preprocessor = PreprocessingModule() segmented_images = preprocessor.run(images, video_start_indices)