def markersColors(numColors): '''return the markers and colors used for plotting.''' # He4 Pore PRL Colors # colors = ['#556270','#1C3249','#4ECDC4','#19857D','#C7F464','#FF6B6B','#A62323'] #556270 # http://www.graphviz.org/content/color-names if numColors == 1: numColors+=1; #colors = loadgmt.getColorList('cb/div','Spectral_08',numColors) #colors = loadgmt.getColorList('cb/div','PiYG_07',numColors) colors = loadgmt.getColorList('cb/qual','Set1_09',numColors) # colors.reverse() markers = loadgmt.getMarkerList() return markers,colors
def markersColors(numColors): '''return the markers and colors used for plotting.''' # He4 Pore PRL Colors # colors = ['#556270','#1C3249','#4ECDC4','#19857D','#C7F464','#FF6B6B','#A62323'] #556270 # http://www.graphviz.org/content/color-names if numColors == 1: numColors += 1 #colors = loadgmt.getColorList('cb/div','Spectral_08',numColors) #colors = loadgmt.getColorList('cb/div','PiYG_07',numColors) colors = loadgmt.getColorList('cb/qual', 'Set1_09', numColors) # colors.reverse() markers = loadgmt.getMarkerList() return markers, colors
def main(): # parse the command line options args = docopt(__doc__) fileNames = args['<file>'] skip = int(args['--skip']) period = int(args['--period']) estimator = args['--estimator'] leglabel = args['--legend'] and args['--legend'] error = args['--error'] and float(args['--error']) val = args['--hline'] and float(args['--hline']) # if labels are not assigned, we default to the PIMCID if not leglabel: leglabel = [] for n,fileName in enumerate(fileNames): leglabel.append(fileName[-13:-4]) # We count the number of lines in the estimator file to make sure we have # some data and grab the headers headers = pimchelp.getHeadersDict(fileNames[0]) # If we don't choose an estimator, provide a list of possible ones if estimator not in headers: errorString = "Need to specify one of:\n" for head,index in headers.iteritems(): errorString += "\"%s\"" % head + " " parser.error(errorString) numFiles = len(fileNames) col = list([headers[estimator]]) # Attempt to find a 'pretty name' for the label, otherwise just default to # the column heading label = pimchelp.Description() try: yLong = label.estimatorLongName[estimator] except: yLong = estimator try: yShort = label.estimatorShortName[estimator] except: yShort = estimator # get a label for a possible horizontal line if args['--hline']: if args['--hlabel']: hlabel = args['--hlabel'] else: hlabel = yShort.split()[0] + ' = ' + args['--hline'] # First we load and store all the data data = [] for fileName in fileNames: dataFile = open(fileName,'r'); dataLines = dataFile.readlines(); dataFile.close() if len(dataLines) > 2: data.append(loadtxt(fileName,usecols=col,unpack=True)) # ============================================================================ # Figure 1 : column vs. MC Steps # ============================================================================ figure(1) connect('key_press_event',kevent.press) colors = loadgmt.getColorList('cw/1','cw1-029',max(numFiles,2)) #colors = loadgmt.getColorList('cw/1','cw1-013',max(numFiles,2)) #colors = loadgmt.getColorList('oc','rainbow',max(numFiles,2)) #colors = loadgmt.getColorList('grass','bgyr',max(numFiles,2)) colors = ["#70D44A", "#BE5AD4", "#D04537", "#81D0D5", "#393A2E", "#C49ECA", "#C5CB7A", "#523767", "#D39139", "#C8488C", "#CB817A", "#73D999", "#6F2836", "#6978CF", "#588569", "#CDC3AD", "#5C7890", "#7F5327", "#D0D33D", "#5B7D2E"] colors = ["#53B0AD", "#D74C20", "#CD53DA", "#58C038", "#5F4B7A", "#49622A", "#CE4379", "#D2912E", "#7970D2", "#749AC9", "#7D5121", "#5EAC72", "#CB85AA", "#853B46", "#396465", "#A5A33E", "#D47F5B", "#BA4EA5", "#C93F44", "#5D9937"] colors =["#CAC5E8", "#E1D273", "#82DFCE", "#F1AF92", "#E1E7CF", "#92C798", "#CDF197", "#DDD199", "#ECB1D1", "#91C7DE", "#E3AF6E", "#ECAAAC", "#CEB29C", "#B2BCA9", "#B0C778", "#DBCDD7", "#B5DEE0", "#A5ECB4", "#C5E6C0", "#E5CCC0"] colors = ["#688EAF", "#FC991D", "#7DEB74", "#FA6781", "#8B981D", "#BB7548", "#AD8FE4", "#96E4AA", "#D669B0", "#E1C947", "#A78200", "#7C9FE4", "#957DA6", "#75BF38", "#C3B059", "#51C17A", "#79AEBB", "#2790AC", "#688ECE", "#749DB7"] colors += colors colors += colors colors += colors print len(colors) for n,cdata in enumerate(data): plot(cdata[skip:],marker='s',color=colors[n],markeredgecolor=colors[n],\ markersize=4,linestyle='-',linewidth=1.0) ylabel(yLong) xlabel("MC Bin Number") # ============================================================================ # Figure 2 : running average of column vs. MC Bins # ============================================================================ figure(2) connect('key_press_event',kevent.press) n = 0 for n,cdata in enumerate(data): if size(cdata) > 1: # Get the cumulative moving average if args['--error']: cma = cumulativeMovingAverage(cdata[skip:]) sem = error*ones_like(cma) elif args['--nobin']: cma,sem = cumulativeMovingAverageWithError(cdata[skip:]) else: cma = cumulativeMovingAverage(cdata[skip:]) ave,err = getStats(cdata[skip:]) sem = err*ones_like(cma) print '%s: %s = %8.4E +- %8.4E' % (leglabel[n],yShort, ave,err) sma = simpleMovingAverage(50,cdata[skip:]) x = range(int(0.10*len(cma)),len(cma)) plot(x,cma[x],color=colors[n],linewidth=1.0,marker='None',linestyle='-', label=leglabel[n]) fill_between(x, cma[x]-sem[x], cma[x]+sem[x],color=colors[n], alpha=0.1) n += 1 # Add a possible horizontal line indicating some value if args['--hline']: axhline(y=val,color='gray',linewidth=2.5, label=hlabel) ylabel(yLong) xlabel("MC Bin Number") tight_layout() leg = legend(loc='best', frameon=False, prop={'size':16},markerscale=2, ncol=2) for l in leg.get_lines(): l.set_linewidth(4.0) # Perform a Welch's t-test if args['--ttest']: # We only perform the Welch's t test if we have multiple samples we are # comparing N = len(data) if N > 1: tval = zeros([N,N]) p = zeros([N,N]) for i in range(N): for j in range(i+1,N): tval[i,j],p[i,j] = stats.ttest_ind(data[i][skip:], data[j][skip:], equal_var=False) # ============================================================================ # Figure 3 : plot the estimator histogram along with t-test values # ============================================================================ fig = figure(3) connect('key_press_event',kevent.press) for i in range(N): n, bins, patches = hist(data[i], 100, normed=True, facecolor=colors[i], alpha=0.75, label=leglabel[i], edgecolor='w') # Add the p-values from the t-test y = 0.92 if N > 1: figtext(0.78, y, 't-test p values', horizontalalignment='center', verticalalignment='top', fontsize=15, backgroundcolor='white') for i in range(N): for j in range(i+1,N): y -= 0.03 lab = 'p(' + leglabel[i] + ' - ' + leglabel[j] + ') = ' + '%4.2f'%p[i,j] figtext(0.78, y, lab, horizontalalignment='center', verticalalignment='top', fontsize=12, backgroundcolor='white') legend(loc='upper left', fontsize=15, frameon=False) xlabel(yLong) ylabel(r'$P($' + estimator + r'$)$') show()
def main(): # define the mapping between short names and label names shortFlags = ['n','T','N','t','u','V','L','W','D'] parMap = {'n':'Initial Density', 'T':'Temperature', 'N':'Initial Number Particles', 't':'Imaginary Time Step', 'u':'Chemical Potential', 'V':'Container Volume', 'L':'Container Length', 'W':'Virial Window', 'M':'Update Length'} #'M':'Update Slices (Mbar)'} # setup the command line parser options parser = OptionParser() parser.add_option("-T", "--temperature", dest="T", type="float", help="simulation temperature in Kelvin") parser.add_option("-N", "--number-particles", dest="N", type="int", help="number of particles") parser.add_option("-n", "--density", dest="n", type="float", help="number density in Angstroms^{-d}") parser.add_option("-t", "--imag-time-step", dest="tau", type="float", help="imaginary time step") parser.add_option("-u", "--chemical-potential", dest="mu", type="float", help="chemical potential in Kelvin") parser.add_option("-L", "--Lz", dest="L", type="float", help="Length in Angstroms") parser.add_option("-V", "--volume", dest="V", type="float", help="volume in Angstroms^d") parser.add_option("-r", "--reduce", dest="reduce", choices=['T','N','n','u','t','L','V','W','M'], help="variable name for reduction [T,N,n,u,t,L,V,W,M]") parser.add_option("--canonical", action="store_true", dest="canonical", help="are we in the canonical ensemble?") parser.add_option("-p", "--plot", action="store_true", dest="plot", help="do we want to produce data plots?") parser.add_option("-R", "--radius", dest="R", type="float", help="radius in Angstroms") parser.add_option("-s", "--skip", dest="skip", type="int", help="number of measurements to skip") parser.add_option("-e", "--estimator", dest="estimator", type="str", help="specify a single estimator to reduce") parser.add_option("-i", "--pimcid", dest="pimcid", type="str", help="specify a single pimcid") parser.set_defaults(canonical=False) parser.set_defaults(plot=False) parser.set_defaults(skip=0) # parse the command line options and get the reduce flag (options, args) = parser.parse_args() # Determine the working directory if args: baseDir = args[0] if baseDir == '.': baseDir = '' else: baseDir = '' skip = options.skip if (not options.reduce): parser.error("need a correct reduce flag (-r,--reduce): [T,N,n,u,t,L,V,W,D]") # Check that we are in the correct ensemble pimchelp.checkEnsemble(options.canonical) dataName,outName = pimchelp.getFileString(options) reduceFlag = [] reduceFlag.append(options.reduce) reduceFlag.append(parMap[options.reduce]) # Create the PIMC analysis helper and fill up the simulation parameters maps pimc = pimchelp.PimcHelp(dataName,options.canonical,baseDir=baseDir) pimc.getSimulationParameters() # Form the full output file name if options.R == None: outName += '.dat' else: outName += '-R-%04.1f.dat' % options.R # possible types of estimators we may want to reduce estList = ['estimator', 'super', 'obdm', 'pair', 'radial', 'number', 'radwind', 'radarea', 'planedensity', 'planearea', 'planewind','virial','linedensity','linepotential'] estDo = {e:False for e in estList} # if we specify a single estimator, only do that one if options.estimator: estDo[options.estimator] = True # otherwise test to see if the file exists else: for e in estList: if pimc.getFileList(e): estDo[e] = True else: estDo[e] = False # We first reduce the scalar estimators and output them to disk if estDo['estimator']: head1,scAve1,scErr1 = getScalarEst('estimator',pimc,outName,reduceFlag,skip=skip) if estDo['virial']: head1,scAve1,scErr1 = getScalarEst('virial',pimc,outName,reduceFlag,skip=skip) if estDo['super']: head2,scAve2,scErr2 = getScalarEst('super',pimc,outName,reduceFlag,skip=skip) # Now we do the normalized one body density matrix if estDo['obdm']: x1,ave1,err1 = getVectorEst('obdm',pimc,outName,reduceFlag,'r [A]','n(r)',skip=skip) # Now we do the pair correlation function if estDo['pair']: x2,ave2,err2 = getVectorEst('pair',pimc,outName,reduceFlag,'r [A]','g(r)',skip=skip) # The radial Density if estDo['radial']: x3,ave3,err3 = getVectorEst('radial',pimc,outName,reduceFlag,'r [A]','rho(r)',skip=skip) # Compute the number distribution function and compressibility if we are in # the grand canonical ensemble if estDo['number']: x4,ave4,err4 = getVectorEst('number',pimc,outName,reduceFlag,'N','P(N)',skip=skip) # I don't know why this isn't working, MCStat is giving me an error, will # return to this later. AGD #kappa,kappaErr = getKappa(pimc,outName,reduceFlag) # The radially averaged Winding superfluid density if estDo['radwind']: x5,ave5,err5 = getVectorEst('radwind',pimc,outName,reduceFlag,'r [A]','rho_s(r)',skip=skip) # The radially averaged area superfliud density if estDo['radarea']: x6,ave6,err6 = getVectorEst('radarea',pimc,outName,reduceFlag,'r [A]','rho_s(r)',skip=skip) if estDo['planewind']: x7,ave7,err7 = getVectorEst('planewind',pimc,outName,reduceFlag,'n','rho_s(r)',skip=skip) if estDo['planearea']: x8,ave8,err8 = getVectorEst('planearea',pimc,outName,reduceFlag,'n','rho_s(r)',skip=skip) if estDo['planedensity']: x9,ave9,err9 = getVectorEst('planedensity',pimc,outName,reduceFlag,'n','rho(r)',skip=skip) if estDo['linedensity']: x10,ave10,err10 = getVectorEst('linedensity',pimc,outName,reduceFlag,\ 'r [A]','rho1d(r)',skip=skip) if estDo['linepotential']: x11,ave11,err11 = getVectorEst('linepotential',pimc,outName,reduceFlag,\ 'r [A]','V1d(r)',skip=skip) # Do we show plots? if options.plot: figNum = 1 # Get the changing parameter that we are plotting against param = [] for ID in pimc.id: param.append(float(pimc.params[ID][reduceFlag[1]])) numParams = len(param) markers = loadgmt.getMarkerList() colors = loadgmt.getColorList('cw/1','cw1-029',10) # ----------------------------------------------------------------------------- # Plot the averaged data # ----------------------------------------------------------------------------- if estDo['estimator']: headLab = ['E/N','K/N','V/N','N', 'diagonal'] dataCol = [] for head in headLab: n = 0 for h in head1: if head == h: dataCol.append(n) break n += 1 yLabelCol = ['Energy / N', 'Kinetic Energy / N', 'Potential Energy / N',\ 'Number Particles', 'Diagonal Fraction'] # ============================================================================ # Figure -- Various thermodynamic quantities # ============================================================================ for n in range(len(dataCol)): figure(figNum) connect('key_press_event',kevent.press) errorbar(param, scAve1[:,dataCol[n]], yerr=scErr1[:,dataCol[n]],\ color=colors[n],marker=markers[n],markeredgecolor=colors[n],\ markersize=8,linestyle='None',capsize=4) xlabel('%s'%options.reduce) ylabel(yLabelCol[n]) tight_layout() figNum += 1 # ============================================================================ # Figure -- The superfluid density # ============================================================================ if estDo['super']: figure(figNum) connect('key_press_event',kevent.press) errorbar(param, scAve2[:,0], yerr=scErr2[:,0],\ color=colors[0],marker=markers[0],markeredgecolor=colors[0],\ markersize=8,linestyle='None',capsize=4) tight_layout() xlabel('%s'%options.reduce) ylabel('Superfluid Density') # ============================================================================ # Figure -- The one body density matrix # ============================================================================ if estDo['obdm']: figNum += 1 figure(figNum) connect('key_press_event',kevent.press) ax = subplot(111) for n in range(numParams): lab = '%s = %s' % (options.reduce,param[n]) errorbar(x1[n,:], (ave1[n,:]+1.0E-15), err1[n,:],color=colors[n],marker=markers[0],\ markeredgecolor=colors[n], markersize=8,linestyle='None',label=lab) #axis([0,21,1.0E-5,1.1]) xlabel('r [Angstroms]') ylabel('One Body Density Matrix') tight_layout() legend(loc='best', frameon=False, prop={'size':16},ncol=2) # ============================================================================ # Figure -- The pair correlation function # ============================================================================ if estDo['pair']: figNum += 1 figure(figNum) connect('key_press_event',kevent.press) for n in range(numParams): lab = '%s = %s' % (options.reduce,param[n]) errorbar(x2[n,:], ave2[n,:], yerr=err2[n,:],color=colors[n],marker=markers[0],\ markeredgecolor=colors[n], markersize=8,linestyle='None',label=lab,capsize=6) # axis([0,256,1.0E-5,1.2]) xlabel('r [Angstroms]') ylabel('Pair Correlation Function') legend(loc='best', frameon=False, prop={'size':16},ncol=2) tight_layout() # We only plot the compressibility if we are in the grand-canonical ensemble if not options.canonical: # ============================================================================ # Figure -- The Number distribution # ============================================================================ if estDo['number']: figNum += 1 figure(figNum) connect('key_press_event',kevent.press) # Find which column contains the average number of particles for hn,h in enumerate(head1): if h == 'N': break for n in range(numParams): lab = '%s = %s' % (options.reduce,param[n]) aN = scAve1[n,hn] errorbar(x4[n,:]-aN, ave4[n,:], err4[n,:],color=colors[n],marker=markers[0],\ markeredgecolor=colors[n],\ markersize=8,linestyle='None',label=lab,capsize=6) axis([-30,30,0.0,1.2]) xlabel(r'$N-\langle N \rangle$') ylabel('P(N)') tight_layout() legend(loc='best', frameon=False, prop={'size':16},ncol=2) # ============================================================================ # Figure -- The Compressibility # ============================================================================ #figNum += 1 #figure(figNum) #connect('key_press_event',kevent.press) #errorbar(param, kappa, yerr=kappaErr, color=colors[0],marker=markers[0],\ # markeredgecolor=colors[0], markersize=8,linestyle='None',capsize=6) #tight_layout() #xlabel('%s'%options.reduce) #ylabel(r'$\rho^2 \kappa$') # ============================================================================ # Figure -- The radial density # ============================================================================ if len(glob.glob('CYLINDER')) > 0: figNum += 1 figure(figNum) connect('key_press_event',kevent.press) ax = subplot(111) for n in range(numParams): lab = '%s = %s' % (options.reduce,param[n]) errorbar(x3[n,:], (ave3[n,:]+1.0E-15), err3[n,:],color=colors[n],marker=markers[0],\ markeredgecolor=colors[n], markersize=8,linestyle='None',label=lab) #axis([0,21,1.0E-5,1.1]) tight_layout() xlabel('r [Angstroms]') ylabel('Radial Density') legend(loc='best', frameon=False, prop={'size':16},ncol=2) show()
def main(): # setup the command line parser options parser = argparse.ArgumentParser(description='Plot binning analysis for \ MC Data for Scalar Estimators.') parser.add_argument('fileNames', help='Scalar estimator files', nargs='+') parser.add_argument('--estimator', '-e', help='A list of estimator names \ that are to be plotted.', type=str) parser.add_argument('--skip', '-s', help='Number of measurements to be \ skipped in the binning analysis.', type=int, default=0) parser.add_argument('--scale', help='Option to compare binning results \ for different parameters', action='store_true') args = parser.parse_args() fileNames = args.fileNames scale = args.scale if len(fileNames) < 1: parser.error("Need to specify at least one scalar estimator file") # We count the number of lines in the estimator file to make sure we have # some data and grab the headers headers = pimchelp.getHeadersDict(fileNames[0]) # If we don't choose an estimator, provide a list of possible ones if not args.estimator or args.estimator not in headers: errorString = "Need to specify one of:\n" for head, index in headers.iteritems(): errorString += "\"%s\"" % head + " " parser.error(errorString) numFiles = len(fileNames) col = list([headers[args.estimator]]) # Attempt to find a 'pretty name' for the label, otherwise just default to # the column heading label = pimchelp.Description() try: yLong = label.estimatorLongName[args.estimator] except: yLong = args.estimator try: yShort = label.estimatorShortName[args.estimator] except: yShort = args.estimator # ============================================================================ # Figure 1 : Error vs. bin level # ============================================================================ figure(1) connect('key_press_event', kevent.press) colors = loadgmt.getColorList('cw/1', 'cw1-029', max(numFiles, 2)) n = 0 for fileName in fileNames: dataFile = open(fileName, 'r') dataLines = dataFile.readlines() dataFile.close() if len(dataLines) > 2: data = loadtxt(fileName, usecols=col) if not pyutils.isList(data): data = list([data]) delta = MCstat.bin(data[args.skip:]) if n == 0: delta_ar = np.zeros((numFiles, delta.shape[0])) delta_ar[n, :] = delta.T #delta_ar[n,:len(delta)] = delta.T n += 1 if n > 1: if scale: for m in range(n): plot(np.arange(len(delta_ar)),delta_ar[m],marker='s',markersize=4,\ linestyle='-',linewidth=1.0,color=colors[m],\ markeredgecolor=colors[m]) else: Delta = np.average(delta_ar, 0) dDelta = np.std(delta_ar, 0) / np.sqrt(n) errorbar(np.arange(len(Delta)),Delta,dDelta,marker='s',markersize=4,\ linestyle='-',linewidth=1.0,color=colors[0],\ markeredgecolor=colors[0]) bin_ac = MCstat.bin_ac(Delta, dDelta) bin_conv = MCstat.bin_conv(Delta, dDelta) print 'Convergence Ratio: %1.2f+/-%1.2f' % (bin_conv['CF'], bin_conv['dCF']) print 'autocorrlelation time: %2.1f+/-%2.1f' % \ (bin_ac['tau'],bin_ac['dtau']) else: plot(delta,marker='s',markersize=4,linestyle='-',linewidth=1.0,\ color=colors[0],markeredgecolor=colors[0]) print 'Convergence Ratio: %1.3f' % MCstat.bin_conv(delta)['CF'] print 'autocorrlelation time: %3.3f' % MCstat.bin_ac(delta)['tau'] ylabel(r"$\Delta_l$") xlabel("$l$") title("Bin scaling: " + yLong) show()
def main(): # parse the command line options args = docopt(__doc__) fileNames = args['<file>'] skip = int(args['--skip']) period = int(args['--period']) estimator = args['--estimator'] leglabel = args['--legend'] and args['--legend'] error = args['--error'] and float(args['--error']) val = args['--hline'] and float(args['--hline']) # if labels are not assigned, we default to the PIMCID if not leglabel: leglabel = [] for n, fileName in enumerate(fileNames): leglabel.append(fileName[-13:-4]) # We count the number of lines in the estimator file to make sure we have # some data and grab the headers headers = pimchelp.getHeadersDict(fileNames[0]) # If we don't choose an estimator, provide a list of possible ones if estimator not in headers: errorString = "Need to specify one of:\n" for head, index in headers.iteritems(): errorString += "\"%s\"" % head + " " parser.error(errorString) numFiles = len(fileNames) col = list([headers[estimator]]) # Attempt to find a 'pretty name' for the label, otherwise just default to # the column heading label = pimchelp.Description() try: yLong = label.estimatorLongName[estimator] except: yLong = estimator try: yShort = label.estimatorShortName[estimator] except: yShort = estimator # get a label for a possible horizontal line if args['--hline']: if args['--hlabel']: hlabel = args['--hlabel'] else: hlabel = yShort.split()[0] + ' = ' + args['--hline'] # First we load and store all the data data = [] for fileName in fileNames: dataFile = open(fileName, 'r') dataLines = dataFile.readlines() dataFile.close() if len(dataLines) > 2: data.append(loadtxt(fileName, usecols=col, unpack=True)) # ============================================================================ # Figure 1 : column vs. MC Steps # ============================================================================ figure(1) connect('key_press_event', kevent.press) colors = loadgmt.getColorList('cw/1', 'cw1-029', max(numFiles, 2)) #colors = loadgmt.getColorList('cw/1','cw1-013',max(numFiles,2)) #colors = loadgmt.getColorList('oc','rainbow',max(numFiles,2)) #colors = loadgmt.getColorList('grass','bgyr',max(numFiles,2)) colors = [ "#70D44A", "#BE5AD4", "#D04537", "#81D0D5", "#393A2E", "#C49ECA", "#C5CB7A", "#523767", "#D39139", "#C8488C", "#CB817A", "#73D999", "#6F2836", "#6978CF", "#588569", "#CDC3AD", "#5C7890", "#7F5327", "#D0D33D", "#5B7D2E" ] colors = [ "#53B0AD", "#D74C20", "#CD53DA", "#58C038", "#5F4B7A", "#49622A", "#CE4379", "#D2912E", "#7970D2", "#749AC9", "#7D5121", "#5EAC72", "#CB85AA", "#853B46", "#396465", "#A5A33E", "#D47F5B", "#BA4EA5", "#C93F44", "#5D9937" ] colors = [ "#CAC5E8", "#E1D273", "#82DFCE", "#F1AF92", "#E1E7CF", "#92C798", "#CDF197", "#DDD199", "#ECB1D1", "#91C7DE", "#E3AF6E", "#ECAAAC", "#CEB29C", "#B2BCA9", "#B0C778", "#DBCDD7", "#B5DEE0", "#A5ECB4", "#C5E6C0", "#E5CCC0" ] colors = [ "#688EAF", "#FC991D", "#7DEB74", "#FA6781", "#8B981D", "#BB7548", "#AD8FE4", "#96E4AA", "#D669B0", "#E1C947", "#A78200", "#7C9FE4", "#957DA6", "#75BF38", "#C3B059", "#51C17A", "#79AEBB", "#2790AC", "#688ECE", "#749DB7" ] colors += colors colors += colors colors += colors print len(colors) for n, cdata in enumerate(data): plot(cdata[skip:],marker='s',color=colors[n],markeredgecolor=colors[n],\ markersize=4,linestyle='-',linewidth=1.0) ylabel(yLong) xlabel("MC Bin Number") # ============================================================================ # Figure 2 : running average of column vs. MC Bins # ============================================================================ figure(2) connect('key_press_event', kevent.press) n = 0 for n, cdata in enumerate(data): if size(cdata) > 1: # Get the cumulative moving average if args['--error']: cma = cumulativeMovingAverage(cdata[skip:]) sem = error * ones_like(cma) elif args['--nobin']: cma, sem = cumulativeMovingAverageWithError(cdata[skip:]) else: cma = cumulativeMovingAverage(cdata[skip:]) ave, err = getStats(cdata[skip:]) sem = err * ones_like(cma) print '%s: %s = %8.4E +- %8.4E' % (leglabel[n], yShort, ave, err) sma = simpleMovingAverage(50, cdata[skip:]) x = range(int(0.10 * len(cma)), len(cma)) plot(x, cma[x], color=colors[n], linewidth=1.0, marker='None', linestyle='-', label=leglabel[n]) fill_between(x, cma[x] - sem[x], cma[x] + sem[x], color=colors[n], alpha=0.1) n += 1 # Add a possible horizontal line indicating some value if args['--hline']: axhline(y=val, color='gray', linewidth=2.5, label=hlabel) ylabel(yLong) xlabel("MC Bin Number") tight_layout() leg = legend(loc='best', frameon=False, prop={'size': 16}, markerscale=2, ncol=2) for l in leg.get_lines(): l.set_linewidth(4.0) # Perform a Welch's t-test if args['--ttest']: # We only perform the Welch's t test if we have multiple samples we are # comparing N = len(data) if N > 1: tval = zeros([N, N]) p = zeros([N, N]) for i in range(N): for j in range(i + 1, N): tval[i, j], p[i, j] = stats.ttest_ind(data[i][skip:], data[j][skip:], equal_var=False) # ============================================================================ # Figure 3 : plot the estimator histogram along with t-test values # ============================================================================ fig = figure(3) connect('key_press_event', kevent.press) for i in range(N): n, bins, patches = hist(data[i], 100, normed=True, facecolor=colors[i], alpha=0.75, label=leglabel[i], edgecolor='w') # Add the p-values from the t-test y = 0.92 if N > 1: figtext(0.78, y, 't-test p values', horizontalalignment='center', verticalalignment='top', fontsize=15, backgroundcolor='white') for i in range(N): for j in range(i + 1, N): y -= 0.03 lab = 'p(' + leglabel[i] + ' - ' + leglabel[ j] + ') = ' + '%4.2f' % p[i, j] figtext(0.78, y, lab, horizontalalignment='center', verticalalignment='top', fontsize=12, backgroundcolor='white') legend(loc='upper left', fontsize=15, frameon=False) xlabel(yLong) ylabel(r'$P($' + estimator + r'$)$') show()
def main(): # setup the command line parser options parser = argparse.ArgumentParser(description='Plot binning analysis for \ MC Data for Scalar Estimators.') parser.add_argument('fileNames', help='Scalar estimator files', nargs='+') parser.add_argument('--estimator','-e', help='A list of estimator names \ that are to be plotted.', type=str) parser.add_argument('--skip','-s', help='Number of measurements to be \ skipped in the binning analysis.', type=int, default=0) parser.add_argument('--scale', help='Option to compare binning results \ for different parameters', action='store_true') args = parser.parse_args() fileNames = args.fileNames scale = args.scale if len(fileNames) < 1: parser.error("Need to specify at least one scalar estimator file") # We count the number of lines in the estimator file to make sure we have # some data and grab the headers headers = pimchelp.getHeadersDict(fileNames[0]) # If we don't choose an estimator, provide a list of possible ones if not args.estimator or args.estimator not in headers: errorString = "Need to specify one of:\n" for head,index in headers.iteritems(): errorString += "\"%s\"" % head + " " parser.error(errorString) numFiles = len(fileNames) col = list([headers[args.estimator]]) # Attempt to find a 'pretty name' for the label, otherwise just default to # the column heading label = pimchelp.Description() try: yLong = label.estimatorLongName[args.estimator] except: yLong = args.estimator try: yShort = label.estimatorShortName[args.estimator] except: yShort = args.estimator # ============================================================================ # Figure 1 : Error vs. bin level # ============================================================================ figure(1) connect('key_press_event',kevent.press) colors = loadgmt.getColorList('cw/1','cw1-029',max(numFiles,2)) n = 0 for fileName in fileNames: dataFile = open(fileName,'r'); dataLines = dataFile.readlines(); dataFile.close() if len(dataLines) > 2: data = loadtxt(fileName,usecols=col) if not pyutils.isList(data): data = list([data]) delta = MCstat.bin(data[args.skip:]) if n == 0: delta_ar = np.zeros((numFiles,delta.shape[0])) delta_ar[n,:] = delta.T #delta_ar[n,:len(delta)] = delta.T n += 1 if n > 1: if scale: for m in range(n): plot(np.arange(len(delta_ar)),delta_ar[m],marker='s',markersize=4,\ linestyle='-',linewidth=1.0,color=colors[m],\ markeredgecolor=colors[m]) else: Delta = np.average(delta_ar,0) dDelta = np.std(delta_ar,0)/np.sqrt(n) errorbar(np.arange(len(Delta)),Delta,dDelta,marker='s',markersize=4,\ linestyle='-',linewidth=1.0,color=colors[0],\ markeredgecolor=colors[0]) bin_ac = MCstat.bin_ac(Delta,dDelta) bin_conv = MCstat.bin_conv(Delta,dDelta) print 'Convergence Ratio: %1.2f+/-%1.2f'%(bin_conv['CF'],bin_conv['dCF']) print 'autocorrlelation time: %2.1f+/-%2.1f' % \ (bin_ac['tau'],bin_ac['dtau']) else: plot(delta,marker='s',markersize=4,linestyle='-',linewidth=1.0,\ color=colors[0],markeredgecolor=colors[0]) print 'Convergence Ratio: %1.3f' % MCstat.bin_conv(delta)['CF'] print 'autocorrlelation time: %3.3f' % MCstat.bin_ac(delta)['tau'] ylabel(r"$\Delta_l$") xlabel("$l$") title("Bin scaling: "+yLong) show()
def main(): # parse the command line options args = docopt(__doc__) fileNames = args['<file>'] skip = int(args['--skip']) period = int(args['--period']) estimators = args['--estimator'] leglabel = args['--legend'] and args['--legend'] error = args['--error'] and float(args['--error']) # number of estimators must equal number of filenames given if len(fileNames) != len(estimators): print "\nNumber of estimators must equal number of filenames supplied." print "Note that these must be in the same order!\n" sys.exit() # if labels are not assigned, we default to the PIMCID if not leglabel: leglabel = [] for n,fileName in enumerate(fileNames): leglabel.append(fileName[-13:-4]) numFiles = len(fileNames) # first load all of data from all files into a list col = [] data = [] for numEst in range(len(estimators)): headers = pimchelp.getHeadersDict(fileNames[numEst]) col = list([headers[estimators[numEst]]]) dataFile = open(fileNames[numEst],'r'); dataLines = dataFile.readlines(); dataFile.close() if len(dataLines) > 2: data.append(loadtxt(fileNames[numEst],usecols=col,unpack=True)) # loop over files, loading them and plotting all data wanted. for numEst in range(len(estimators)): # We count the number of lines in the estimator file to make sure we have # some data and grab the headers headers = pimchelp.getHeadersDict(fileNames[numEst]) # If we don't choose an estimator, provide a list of possible ones if estimators[numEst] not in headers: errorString = "Need to specify one of:\n" for head,index in headers.iteritems(): errorString += "\"%s\"" % head + " " parser.error(errorString) # Attempt to find a 'pretty name' for the label, otherwise just default to # the column heading label = pimchelp.Description() try: yLong = label.estimatorLongName[estimators[numEst]] except: yLong = estimators[numEst] try: yShort = label.estimatorShortName[estimators[numEst]] except: yShort = estimators[numEst] # ============================================================================ # Figure 1 : column vs. MC Steps # ============================================================================ figNum = 1 if args['--pdf']: figure(figNum, dpi=40, figsize=(6,3.8)) else: figure(figNum) connect('key_press_event',kevent.press) colors = loadgmt.getColorList('oc','rainbow',max(numFiles,2)) for n,cdata in enumerate(data): plot(cdata[skip:],marker='s',color=colors[n],markeredgecolor=colors[n],\ markersize=4,linestyle='-',linewidth=1.0, label=leglabel[n]) ylabel(yLong) xlabel("MC Bin Number") if numEst == 0: legend(loc=3, frameon=False, ncol=2) if args['--pdf']: savefig('col_vs_MCSteps.pdf', format='pdf', bbox_inches='tight') savefig('col_vs_MCSteps_trans.pdf', format='pdf', bbox_inches='tight', transparent=True, dpi=40) else: savefig('col_vs_MCSteps_trans.png', format='png', bbox_inches='tight', transparent=True) # ============================================================================ # Figure 2 : running average of column vs. MC Bins # ============================================================================ figNum += 1 if args['--pdf']: figure(figNum, dpi=40, figsize=(6,3.8)) else: figure(figNum, figsize=(6,3.8)) connect('key_press_event',kevent.press) n = 0 for n,cdata in enumerate(data): if size(cdata) > 1: # Get the cumulative moving average if args['--error']: cma = cumulativeMovingAverage(cdata[skip:]) sem = error*ones_like(cma) elif args['--bin']: cma = cumulativeMovingAverage(cdata[skip:]) ave,err = getStats(cdata[skip:]) sem = err*ones_like(cma) print '%s: %s = %8.4E +- %8.4E' % (leglabel[n],yShort, ave,err) else: cma,sem = cumulativeMovingAverageWithError(cdata[skip:]) sma = simpleMovingAverage(50,cdata[skip:]) x = range(int(0.10*len(cma)),len(cma)) plot(x,cma[x],color=colors[n],linewidth=1.0,marker='None',linestyle='-', label=leglabel[n]) fill_between(x, cma[x]-sem[x], cma[x]+sem[x],color=colors[n], alpha=0.1) #n += 1 ylabel(yLong) xlabel("MC Bin Number") if numEst == 0: leg = legend(loc='best', frameon=False, prop={'size':12},markerscale=2, ncol=2) for l in leg.get_lines(): l.set_linewidth(4.0) if args['--pdf']: savefig('runAve_vs_MCSteps.pdf', format='pdf', bbox_inches='tight') savefig('runAve_vs_MCSteps_trans.pdf', format='pdf', bbox_inches='tight',transparent=True, dpi=40) else: savefig('runAve_vs_MCSteps_trans.png', format='png', bbox_inches='tight',transparent=True) # Perform a Welch's t-test if args['--ttest']: # We only perform the Welch's t test if we have multiple samples we are # comparing N = len(data) if N > 1: tval = zeros([N,N]) p = zeros([N,N]) for i in range(N): for j in range(i+1,N): tval[i,j],p[i,j] = stats.ttest_ind(data[i][skip:], data[j][skip:], equal_var=False) figNum += 1 # ============================================================================ # Figure 3 : plot the estimator histogram along with t-test values # ============================================================================ if args['--pdf']: fig = figure(figNum, dpi=40, figsize=(6,3.8)) else: fig = figure(figNum) connect('key_press_event',kevent.press) for i in range(N): n, bins, patches = hist(data[i], 100, normed=True, facecolor=colors[i], alpha=0.75, label=leglabel[i], edgecolor='w') '''# Add the p-values from the t-test y = 0.92 if N > 1: figtext(0.78, y, 't-test p values', horizontalalignment='center', verticalalignment='top', fontsize=15, backgroundcolor='white') for i in range(N): for j in range(i+1,N): y -= 0.03 lab = 'p(' + leglabel[i] + ' - ' + leglabel[j] + ') = ' + '%4.2f'%p[i,j] figtext(0.78, y, lab, horizontalalignment='center', verticalalignment='top', fontsize=12, backgroundcolor='white')''' #legend(loc='upper left', fontsize=15, frameon=False) if numEst == 0: legend(loc='upper left', frameon=False) xlabel(yLong) yLabb = estimators[numEst] if yLabb == 'Ecv/N': yLabb = 'E/N' ylabel(r'$P($' + yLabb + r'$)$') if args['--pdf']: savefig('ttest_histogram.pdf', format='pdf', bbox_inches='tight') savefig('ttest_histogram_trans.pdf', format='pdf', bbox_inches='tight', transparent=True, dpi=40) else: savefig('ttest_histogram_trans.png', format='png', bbox_inches='tight', transparent=True) # ============================================================================ # Figure 4 : autocorrelation # ============================================================================ figNum += 1 if args['--pdf']: figure(figNum, dpi=40, figsize=(6,3.8)) else: figure(figNum) connect('key_press_event',kevent.press) colors = loadgmt.getColorList('oc','rainbow',max(numFiles,2)) mcTime = arange(0,len(cdata[skip:]),1) for n,cdata in enumerate(data): plot(mcTime,estimated_autocorrelation(cdata[skip:]), marker='s',color=colors[n],markeredgecolor=colors[n], markersize=4,linestyle='-',linewidth=1.0, label=leglabel[n]) ylabel("Autocorrelation") xlabel("Data") if numEst == 0: legend(loc=3, frameon=False, ncol=2) '''if args['--pdf']: savefig('autocorrelation.pdf', format='pdf', bbox_inches='tight') savefig('autocorrelation_trans.pdf', format='pdf', bbox_inches='tight', transparent=True, dpi=40) else: savefig('autocorrelation_trans.png', format='png', bbox_inches='tight', transparent=True) ''' show()