from loadmatlab_workspace import load_mat import copy import numpy as np from pickfirstf_python import pickfirstf before= load_mat('nopinone-kit') kit=before['kit'] fs_original = kit['onedpeakfsunassigned'] hs_original = kit['onedpeakhsunassigned'] fs= copy.copy(fs_original) hs= copy.copy(hs_original) fstart, hstart, istart, rank = pickfirstf(kit,1) fs = fs[np.where(hs > 12.8685)] #within this treshold hs = hs[np.where(hs > 12.8685)] print("wow") # database= before['database'] # fieldname = before['fieldname'] # # database=[] # # dict1= {'a' :'k', 'netpval': 2, 'dog':'woof'} # # dict2= {'a' :'c', 'netpval': 1, 'dog':'bork'} # # dict3= {'a' :'b', 'netpval': 5, 'dog':'bark'} # # database.append(dict1) # # database.append(dict2) # # database.append(dict3) # output={} # for i in fieldname: # output.update({i: []}) # # dog_sounds= [] # # letters=[]
from evalf_python import evalf from scipy import interpolate from loadmatlab_workspace import load_mat import numpy as np from custommpl import customplot from matplotlib.figure import Figure from matplotlib.backends.backend_qt4agg import (FigureCanvasQTAgg as FigureCanvas, NavigationToolbar2QT as NavigationToolbar) before = load_mat('input-saveAshape-plotting') kit = before['kit'] def saveAshape(kit, verbose=1): # Omitting stuff about loading and saving files # if nargin < 1 # load('ttfile','kit') # else # save('ttfile','kit') f0J = kit['series1']['fs'] f1J = kit['series4']['fs'] J = range(len(f1J)) Jforf1 = kit['series4']['jvalues'] Jforf0 = kit['series1']['jvalues'] #commenting out call to otherwise unused function, also commented out below #exploreBC(Jforf0,f0J,kit.cheat.molstats);
# import pytest from loadmatlab_workspace import load_mat before=load_mat("before-updateseries-nopinone-unsure") s=before['s'] def comparinginput(python_in): return python_in def test_answer(): assert comparinginput(s)=s
from pickfirstf_python import pickfirstf from getflatsquares_python import getflatsquares from seriessquarefromflatsquare_python import seriessquarefromflatsquare from extendseriessquarealltheway_python_July9 import extendseriessquarealltheway from extractfieldsfromcellarray_python import extractfieldsfromcellarray from sortcellarraybyfield_python import sortcellarraybyfield # from trimends_python import trimends from loadmatlab_workspace import load_mat from comparefileoutputs import unpackingstruct # from removeidentical_python import removeidentical before = load_mat('input-addsquaresfromlines-s') kit = before['kit'] linetouse = before['linetouse'] import numpy as np def squaresfromline(kit, linetouse): searchReport = {} ts = kit['tightnesssettings'] # Ignoring timing stuff. Original line: ts.starttime = now; searchReport['bogged'] = 0 searchReport['numflatsquares'] = 0 finalsquares = [] (allsquares, kit, f1) = getflatsquares(kit, linetouse, ts) #adding in f1 to solve the value error fs = kit['usefs'] hs = kit['usehs']
from copy import * #import operator as op from predictnext_python import predictnext from countfrommcounttool_python import countfrommcounttool from loadmatlab_workspace import load_mat # from flipmatrix_python_temp import flipmatrix # from flipseriessquare_python_temp import flipseriessquare # from addlinetolevels_python_temp import addlinetolevels # from checkhealth_python_temp import checkhealth # from addlevels_python_temp import addlevels # from hashfromsquare_python_temp import hashfromsquare # from usablefgrid_python_temp import usablefgrid # updateseriessquare.m before = load_mat('before-updateseriessquare-nopinone') s = before['s'] def updateseriessquare(s, slowmode=1): s['column1'] = updateseries(s['column1']) s['column2'] = updateseries(s['column2']) s['column3'] = updateseries(s['column3']) s['column4'] = updateseries(s['column4']) s['numjs'] = np.size(s['column1']['fs'], axis=None) s['fgrid'] = np.zeros((s['numjs'], 4)) # if s['dtype == 1 s['fgrid'][:, 0] = s['column1']['fs']
import numpy as np #from np.size_py import np.size, findnonzeros from sortcellarraybyfield_python import sortcellarraybyfield from extractfieldsfromcellarray_python import extractfieldsfromcellarray from updateseries_python import updateseries from predictnext_python import predictnext from countfrommcounttool_python import countfrommcounttool from loadmatlab_workspace import load_mat from updateseriessquare_python_temp import updateseriessquare # extendseriessquarealltheway.m from loadmatlab_workspace import load_mat from copy import * from datetime import datetime before= load_mat('input-extendseriessquarealltheway-nopinone') fs= before['fs'] hs= before['hs'] squarelist= before['squarelist'] # ###look at this arianna, it ran without error but u still need to look over the output # middle=load_mat('inthemiddle-extendseriesalltheway-squarelist') # squarelist_m=middle['squarelist'] # newlist_m=middle['newlist'] # before_m=load_mat('squarelist-beforesorting-essatw') squarelist_beforesortm= load_mat('squarelist-beforesorting-essatw')['newlist'] # after_m= load_mat('squarelist-aftersorting-essatw') squarelist_aftersortm= load_mat('squarelist-aftersorting-essatw')['squarelist'] def extendseriessquarealltheway(squarelist,fs,hs): census= np.zeros(20)
from updateseriessquare_python_temp import updateseriessquare # extendseriessquarealltheway.m from loadmatlab_workspace import load_mat from copy import * # before= load_mat('input-extendseriessquarealltheway-nopinone') # fs= before['fs'] # hs= before['hs'] # squarelist= before['squarelist'] ###look at this arianna, it ran without error but u still need to look over the output # middle=load_mat('inthemiddle-extendseriesalltheway-squarelist') # squarelist_m=middle['squarelist'] # newlist_m=middle['newlist'] #testing loadinng individual variables fs = load_mat('input-essaw-fs')['fs'] hs = load_mat('input-essaw-hs')['hs'] squarelist = load_mat('input-essaw-squarelist')['squarelist'] def extendseriessquarealltheway(squarelist, fs, hs): census = np.zeros(20) # extendseriessquarealltheway.m:4 boggeddown = 0 # extendseriessquarealltheway.m:5 newsquarelist = copy(squarelist) # extendseriessquarealltheway.m:6 if np.size(squarelist) == 0: return newsquarelist, boggeddown, census