コード例 #1
0
    if (i + 1) % 10 == 0:
        if params.use_category_normal:
            vxx, vyy = data.load_batch_category_normal('val')
        else:
            vxx, vyy = data.load_batch('val')

        t_loss = loss.eval(feed_dict={
            model.x: txx,
            model.y_: tyy,
            model.keep_prob: 1.0
        })
        v_loss = loss.eval(feed_dict={
            model.x: vxx,
            model.y_: vyy,
            model.keep_prob: 1.0
        })
        print("step {} of {}, train loss {}, val loss {}".format(
            i + 1, params.training_steps, t_loss, v_loss))

    if (i + 1) % 100 == 0:
        if not os.path.exists(params.save_dir):
            os.makedirs(params.save_dir)
        checkpoint_path = os.path.join(params.save_dir, "model.ckpt")
        filename = saver.save(sess, checkpoint_path)

        time_passed = cm.pretty_running_time(time_start)
        time_left = cm.pretty_time_left(time_start, i, params.training_steps)
        print('Model saved. Time passed: {}. Time left: {}'.format(
            time_passed, time_left))
コード例 #2
0
ファイル: train.py プロジェクト: heechul/picar
if params.shuffle_training:
    data.load_imgs()

for i in xrange(params.training_steps):
    txx, tyy = data.load_batch('train')

    train_step.run(feed_dict={model.x:txx, model.y_:tyy, model.keep_prob: 0.8})

    # write logs at every iteration
    if write_summary:
        summary = merged_summary_op.eval(feed_dict={model.x: txx, model.y_: tyy, model.keep_prob: 1.0})
        #summary_writer.add_summary(summary, i)

    if (i+1) % 10 == 0:
        vxx, vyy = data.load_batch('val')
        t_loss = loss.eval(feed_dict={model.x: txx, model.y_: tyy, model.keep_prob: 1.0})
        v_loss = loss.eval(feed_dict={model.x: vxx, model.y_: vyy, model.keep_prob: 1.0})
        print "step {} of {}, train loss {}, val loss {}".format(i+1, params.training_steps, t_loss, v_loss)

    if (i+1) % 100 == 0:
        if not os.path.exists(params.save_dir):
            os.makedirs(params.save_dir)
        checkpoint_path = os.path.join(params.save_dir, "model.ckpt")
        filename = saver.save(sess, checkpoint_path)

        time_passed = cm.pretty_running_time(time_start)
        time_left = cm.pretty_time_left(time_start, i, params.training_steps)
        print 'Model saved. Time passed: {}. Time left: {}'.format(time_passed, time_left)