def in_out_kappa(self): df = pd.read_csv(self.train_fpi, sep='\t', index_col=0) df = df[df['y'] == 0] seqs = list(df['Sequence']) for seq in seqs: ms = motif_seq.LcSeq(seq, self.k, self.lca, 'lca') in_seq, out_seq = ms.seq_in_motif() SeqOb = SequenceParameters(in_seq) print(SeqOb.get_kappa()) seqOb = SequenceParameters(out_seq) print(seqOb.get_kappa()) print('')
def get_features_charge(seq): """Return dictionary of all features associated with charge.""" SeqOb = SequenceParameters(seq) return {'FCR': FCR(seq), 'NCPR': NCPR(seq), 'net_charge': net_charge(seq), 'net_charge_P': net_charge_P(seq), 'RK_ratio': RK_ratio(seq), 'ED_ratio': ED_ratio(seq), 'kappa': SeqOb.get_kappa(), 'omega': SeqOb.get_Omega(), 'SCD': SeqOb.get_SCD()}
def feat_charge(seq): SeqOb = SequenceParameters(seq) return { 'FCR': FCR(seq), 'NCPR': NCPR(seq), 'net_charge': net_charge(seq), 'net_charge_P': net_charge_P(seq), 'RK_ratio': RK_ratio(seq), 'ED_ratio': ED_ratio(seq), 'kappa': SeqOb.get_kappa(), 'omega': SeqOb.get_Omega(), 'SCD': SeqOb.get_SCD() }
def get_kappa(sequence): ####-CREATE A SEQUENCEOBJECT FROM THE AMINO ACID SEQUENCE-############################################################## SeqOb = SequenceParameters(sequence) ####-KAPPA RANGES: 0 < K < 1 --------------- LOW KAPPA:EXTENDED ---- HIGH KAPPA:COMPACTED --------------################ kappa = SeqOb.get_kappa() return kappa