def calc_loc_errors(tdoa_errors_std, m, sound_speed_mps, hydrophones_config,
                    hydrophone_pairs):
    """ Calculates localization errors. Eq. (8) in Mouy et al. 2018."""
    A = defineJacobian(hydrophones_config, m, sound_speed_mps,
                       hydrophone_pairs)
    Cm = (tdoa_errors_std**2) * np.linalg.inv(np.dot(
        A.transpose(), A))  # Model covariance matrix for IID
    err_std = np.sqrt(np.diag(Cm))
    return pd.DataFrame({
        'x_std': [err_std[0]],
        'y_std': [err_std[1]],
        'z_std': [err_std[2]]
    })
コード例 #2
0
os.mkdir(outdir)

# Define receiver pairs for TDOAs
Rpairs = loclib.defineReceiverPairs(nReceivers)

# Repeats optimization nIter times to ensure stability
for i in range(nIter):

    # Closes all open figures
    plt.close("all")
    # Optimize array configuration
    R, Rchanges, acceptRateChanges, Cost, processingTime = loclib.optimizeArray(
        ReceiverBounds, nReceivers, AnnealingSchedule, S, Rpairs, V,
        NoiseVariance)
    # Get list of Jacobian matrice for each source
    J2 = loclib.defineJacobian(R, S, V, Rpairs)
    # Calculates localization uncertainty for each source
    Uncertainties2 = loclib.getUncertainties(J2, NoiseVariance)
    # Plots unceratinties of optimized array
    loclib.plotArrayUncertainties(R, S, Uncertainties2)
    plt.savefig(os.path.join(
        outdir, 'UncertaintiesPlot' + '_iteration-' + str(i + 1) + '.png'),
                bbox_inches='tight')
    # Plots Optimization results
    loclib.plotOptimizationResults(outdir, nReceivers, Rchanges, Cost,
                                   acceptRateChanges, R, i)

    # Save paraneters and results to pickle file
    outfilename = os
    data = {
        "outroot": outroot,
コード例 #3
0
def getArrayUncertainties(R, radius, spacing, V, NoiseSTD, contoursValues):

    # Virtual sources coordinates -> Cube of points (Cartesian coordinates)
    vec = np.arange(-radius, radius + spacing, spacing)
    X, Y, Z = np.meshgrid(vec, vec, vec, indexing='ij')
    Sx = np.reshape(X, X.shape[0] * X.shape[1] * X.shape[2])
    Sy = np.reshape(Y, Y.shape[0] * Y.shape[1] * Y.shape[2])
    Sz = np.reshape(Z, Z.shape[0] * Z.shape[1] * Z.shape[2])
    S = pd.DataFrame({'x': Sx, 'y': Sy, 'z': Sz})
    # find location of slice
    ind = np.argmin(abs(vec))
    sliceValue = vec[ind]
    # Nb of receivers
    nReceivers = R.shape[0]

    # Variance of TDOA measurement errors
    NoiseVariance = NoiseSTD**2

    # Define receiver pairs for TDOAs
    Rpairs = loclib.defineReceiverPairs(nReceivers)

    # Get list of Jacobian matrice for each source
    J = loclib.defineJacobian(R, S, V, Rpairs)

    # Calculates localization uncertainty for each source
    Uncertainties = loclib.getUncertainties(J, NoiseVariance)

    # Plots unceratinties of optimized array
    loclib.plotArrayUncertainties(R, S, Uncertainties)

    # PLot hydrophone locations
    f0 = plt.figure()
    ax0 = f0.add_subplot(111, projection='3d')
    ax0.scatter(R['x'], R['y'], R['z'], s=30, c='black')
    ax0.set_xlabel('X (m)', labelpad=10)
    ax0.set_ylabel('Y (m)', labelpad=10)
    ax0.set_zlabel('Z (m)', labelpad=10)
    plt.show()

    # Define and plot plane slices
    f, (ax1, ax2, ax3) = plt.subplots(1, 3, sharey=False, figsize=(16, 5))
    ## XY plane
    XY = np.zeros([len(vec), len(vec)])
    for i in range(len(vec)):
        for jj in range(len(vec)):
            idx = S.index[(S['x'] == vec[i]) & (S['y'] == vec[jj]) &
                          (S['z'] == sliceValue)][0]
            XY[i, jj] = Uncertainties['rms'][idx]
    CS_XY = ax1.contour(vec, vec, XY, levels=contoursValues, colors=['k'])
    # Receivers
    ax1.plot(R['x'], R['y'], 'go')
    ax1.set_xlabel('X(m)')
    ax1.set_ylabel('Y(m)')
    ax1.grid(True)
    im = ax1.imshow(XY,
                    interpolation='bilinear',
                    origin='lower',
                    cmap=cm.jet,
                    extent=(-radius, radius, -radius, radius),
                    norm=colors.Normalize(vmin=0, vmax=10))
    ax1.set_aspect('auto')
    cbar = f.colorbar(im, ax=ax1)
    cbar.ax.set_ylabel('Uncertainty (m)')

    ## XZ plane
    XZ = np.zeros([len(vec), len(vec)])
    for i in range(len(vec)):
        for jj in range(len(vec)):
            idx = S.index[(S['x'] == vec[i]) & (S['z'] == vec[jj]) &
                          (S['y'] == sliceValue)][0]
            XZ[i, jj] = Uncertainties['rms'][idx]
    CS_XZ = ax2.contour(vec, vec, XZ, levels=contoursValues, colors=['k'])
    # Receivers
    ax2.plot(R['x'], R['z'], 'go')
    ax2.set_xlabel('X(m)')
    ax2.set_ylabel('Z(m)')
    ax2.grid(True)
    im = ax2.imshow(XZ,
                    interpolation='bilinear',
                    origin='lower',
                    cmap=cm.jet,
                    extent=(-radius, radius, -radius, radius),
                    norm=colors.Normalize(vmin=0, vmax=10))
    ax2.set_aspect('auto')
    cbar = f.colorbar(im, ax=ax2)
    cbar.ax.set_ylabel('Uncertainty (m)')

    ## YZ plane
    YZ = np.zeros([len(vec), len(vec)])
    for i in range(len(vec)):
        for jj in range(len(vec)):
            idx = S.index[(S['y'] == vec[i]) & (S['z'] == vec[jj]) &
                          (S['x'] == sliceValue)][0]
            YZ[i, jj] = Uncertainties['rms'][idx]
    CS_YZ = ax3.contour(vec, vec, YZ, levels=contoursValues, colors=['k'])
    # Receivers
    ax3.plot(R['y'], R['z'], 'go')
    ax3.set_xlabel('Y(m)')
    ax3.set_ylabel('Z(m)')
    ax3.grid(True)
    im = ax3.imshow(YZ,
                    interpolation='bilinear',
                    origin='lower',
                    cmap='jet',
                    extent=(-radius, radius, -radius, radius),
                    norm=colors.Normalize(vmin=0, vmax=10))
    cbar = f.colorbar(im, ax=ax3)
    cbar.ax.set_ylabel('Uncertainty (m)')

    #    from mpl_toolkits.axes_grid1 import make_axes_locatable
    #    divider = make_axes_locatable(plt.gca())
    #    cax = divider.append_axes("right", "5%", pad="3%")
    #    plt.colorbar(im, cax=cax)

    #plt.colorbar(im,ax=ax3)
    ax3.set_aspect('auto')
    #plt.tight_layout()
    plt.show()
    #plt.tight_layout()

    # Extract contours lines
    coord_CS_XY = []
    coord_CS_XZ = []
    coord_CS_YZ = []
    for i in range(len(contoursValues)):
        p1 = CS_XY.collections[i].get_paths()[0]
        coord_CS_XY.append(p1.vertices)
        p2 = CS_XZ.collections[i].get_paths()[0]
        coord_CS_XZ.append(p2.vertices)
        p3 = CS_YZ.collections[i].get_paths()[0]
        coord_CS_YZ.append(p3.vertices)

    return coord_CS_XY, coord_CS_XZ, coord_CS_YZ