def extractChannel(oirFile, ch): options = ImporterOptions() options.setColorMode(ImporterOptions.COLOR_MODE_GRAYSCALE) options.setId(oirFile) options.setCBegin(0, ch) options.setCEnd(0, ch) #options.setSeriesOn(1,True) imps = BF.openImagePlus(options) ip = imps[0] return(ip)
def main(): Interpreter.batchMode = True if (lambda_flat == 0) ^ (lambda_dark == 0): print ("ERROR: Both of lambda_flat and lambda_dark must be zero," " or both non-zero.") return lambda_estimate = "Automatic" if lambda_flat == 0 else "Manual" print "Loading images..." # Use BioFormats reader directly to determine dataset dimensions without # reading every single image. The series count (num_images) is the one value # we can't easily get any other way, but we might as well grab the others # while we have the reader available. bfreader = ImageReader() bfreader.id = str(filename) num_images = bfreader.seriesCount num_channels = bfreader.sizeC width = bfreader.sizeX height = bfreader.sizeY bfreader.close() # The internal initialization of the BaSiC code fails when we invoke it via # scripting, unless we explicitly set a the private 'noOfSlices' field. # Since it's private, we need to use Java reflection to access it. Basic_noOfSlices = Basic.getDeclaredField('noOfSlices') Basic_noOfSlices.setAccessible(True) basic = Basic() Basic_noOfSlices.setInt(basic, num_images) # Pre-allocate the output profile images, since we have all the dimensions. ff_image = IJ.createImage("Flat-field", width, height, num_channels, 32); df_image = IJ.createImage("Dark-field", width, height, num_channels, 32); print("\n\n") # BaSiC works on one channel at a time, so we only read the images from one # channel at a time to limit memory usage. for channel in range(num_channels): print "Processing channel %d/%d..." % (channel + 1, num_channels) print "===========================" options = ImporterOptions() options.id = str(filename) options.setOpenAllSeries(True) # concatenate=True gives us a single stack rather than a list of # separate images. options.setConcatenate(True) # Limit the reader to the channel we're currently working on. This loop # is mainly why we need to know num_images before opening anything. for i in range(num_images): options.setCBegin(i, channel) options.setCEnd(i, channel) # openImagePlus returns a list of images, but we expect just one (a # stack). input_image = BF.openImagePlus(options)[0] # BaSiC seems to require the input image is actually the ImageJ # "current" image, otherwise it prints an error and aborts. WindowManager.setTempCurrentImage(input_image) basic.exec( input_image, None, None, "Estimate shading profiles", "Estimate both flat-field and dark-field", lambda_estimate, lambda_flat, lambda_dark, "Ignore", "Compute shading only" ) input_image.close() # Copy the pixels from the BaSiC-generated profile images to the # corresponding channel of our output images. ff_channel = WindowManager.getImage("Flat-field:%s" % input_image.title) ff_image.slice = channel + 1 ff_image.getProcessor().insert(ff_channel.getProcessor(), 0, 0) ff_channel.close() df_channel = WindowManager.getImage("Dark-field:%s" % input_image.title) df_image.slice = channel + 1 df_image.getProcessor().insert(df_channel.getProcessor(), 0, 0) df_channel.close() print("\n\n") template = '%s/%s-%%s.tif' % (output_dir, experiment_name) ff_filename = template % 'ffp' IJ.saveAsTiff(ff_image, ff_filename) ff_image.close() df_filename = template % 'dfp' IJ.saveAsTiff(df_image, df_filename) df_image.close() print "Done!"