def logistic_skin(): print("\nLogistic Regression for Skin Cancer data:\n") x_train, x_test, y_train, y_test = get_data_skin() logistic = Logistic(x_train, y_train) y_pred = logistic.predict(x_train) print("\nTraining Classification accuracy: ") print(100 - 100 * np.sum(np.abs(y_pred - y_train)) / y_pred.shape[0]) confusionMatrix(y_train, y_pred) y_pred = logistic.predict(x_test) print("\nTesting Classification accuracy: ") print(100 - 100 * np.sum(np.abs(y_pred - y_test)) / y_pred.shape[0]) confusionMatrix(y_test, y_pred) print("ROC Curve: ") plot_roc_curve(y_test, y_pred)
from sklearn.model_selection import train_test_split from sklearn.datasets import make_classification from sklearn.linear_model import LogisticRegression from logistic import Logistic if __name__ == '__main__': X, y = make_classification(5000, flip_y=0.5) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3) clf = Logistic(X.shape[1], 2) clf.fit(X_train, y_train, val_data=(X_test, y_test)) y_pred = clf.predict(X_test) final_acc = (y_pred == y_test).mean() print("logistic (tensorflow): %.4f" % final_acc) clf = LogisticRegression() y_pred = clf.fit(X_train, y_train).predict(X_test) print("logistic (sklearn):", (y_pred == y_test).mean())