def __init__(self, x, y, batch_size, videos, kernels, pools, n_input, n_output, hidden_input, params=None): learning_rate = 0.1 rng = numpy.random.RandomState(1234) print '... building the model' sys.stdout.flush() if not params: # Construct the first convolutional pooling layer: # filtering reduces the image size to (28-5+1,28-5+1)=(24,24) # maxpooling reduces this further to (24/2,24/2) = (12,12) # 4D output tensor is thus of shape (batch_size,nkerns[0],12,12) layer0 = ConvLayer(x, n_input[0], n_output[0], kernels[0], videos[0], pools[0], batch_size, 'L0', rng) layer1 = ConvLayer(layer0.output, n_input[1], n_output[1], kernels[1], videos[1], pools[1], batch_size, 'L1', rng) layer2_input = layer1.output.flatten(2) # construct a fully-connected sigmoidal layer layer2 = HiddenLayer(rng, input=layer2_input, n_in=hidden_input, n_out=batch_size, activation=T.tanh) # classify the values of the fully-connected sigmoidal layer layer3 = LogisticRegression(input=layer2.output, n_in=batch_size, n_out=2) else: layer0 = ConvLayer(x, n_input[0], n_output[0], kernels[0], videos[0], pools[0], batch_size, 'L0', rng, True, params[6], params[7]) layer1 = ConvLayer(layer0.output, n_input[1], n_output[1], kernels[1], videos[1], pools[1], batch_size, 'L1', rng, True, params[4], params[5]) layer2_input = layer1.output.flatten(2) # construct a fully-connected sigmoidal layer layer2 = HiddenLayer(rng, input=layer2_input, n_in=hidden_input, n_out=batch_size, activation=T.tanh, W=params[2], b=params[3]) # classify the values of the fully-connected sigmoidal layer layer3 = LogisticRegression(input=layer2.output, n_in=batch_size, n_out=2, W=params[0], b=params[1]) # the cost we minimize during training is the NLL of the model cost = layer3.negative_log_likelihood(y) # create a list of all model parameters to be fit by gradient descent self.params = layer3.params + layer2.params + layer1.params + layer0.params # create a list of gradients for all model parameters grads = T.grad(cost, self.params) # train_model is a function that updates the model parameters by # SGD Since this model has many parameters, it would be tedious to # manually create an update rule for each model parameter. We thus # create the updates list by automatically looping over all # (params[i],grads[i]) pairs. updates = [] for param_i, grad_i in zip(self.params, grads): updates.append((param_i, param_i - learning_rate * grad_i)) self.train_model = theano.function([x, y], cost, updates=updates) self.validate_model = theano.function(inputs=[x, y], outputs=layer3.errors(y)) self.predict = theano.function(inputs=[x], outputs=layer3.y_pred) print '... building done' sys.stdout.flush()
def evaluate_lenet5(learning_rate=0.1, n_epochs=200, dataset='mnist.pkl.gz', nkerns=[20, 50], batch_size=500): """ Demonstrates lenet on MNIST dataset :type learning_rate: float :param learning_rate: learning rate used (factor for the stochastic gradient) :type n_epochs: int :param n_epochs: maximal number of epochs to run the optimizer :type dataset: string :param dataset: path to the dataset used for training /testing (MNIST here) :type nkerns: list of ints :param nkerns: number of kernels on each layer """ rng = numpy.random.RandomState(23455) datasets = load_data(dataset) train_set_x, train_set_y = datasets[0] valid_set_x, valid_set_y = datasets[1] test_set_x, test_set_y = datasets[2] # compute number of minibatches for training, validation and testing n_train_batches = train_set_x.get_value(borrow=True).shape[0] n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] n_test_batches = test_set_x.get_value(borrow=True).shape[0] n_train_batches /= batch_size n_valid_batches /= batch_size n_test_batches /= batch_size # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch # start-snippet-1 x = T.matrix('x') # the data is presented as rasterized images y = T.ivector('y') # the labels are presented as 1D vector of # [int] labels ###################### # BUILD ACTUAL MODEL # ###################### print '... building the model' # Reshape matrix of rasterized images of shape (batch_size, 28 * 28) # to a 4D tensor, compatible with our LeNetConvPoolLayer # (28, 28) is the size of MNIST images. layer0_input = x.reshape((batch_size, 1, 28, 28)) # Construct the first convolutional pooling layer: # filtering reduces the image size to (28-5+1 , 28-5+1) = (24, 24) # maxpooling reduces this further to (24/2, 24/2) = (12, 12) # 4D output tensor is thus of shape (batch_size, nkerns[0], 12, 12) layer0 = LeNetConvPoolLayer( rng, input=layer0_input, image_shape=(batch_size, 1, 28, 28), filter_shape=(nkerns[0], 1, 5, 5), poolsize=(2, 2) ) # Construct the second convolutional pooling layer # filtering reduces the image size to (12-5+1, 12-5+1) = (8, 8) # maxpooling reduces this further to (8/2, 8/2) = (4, 4) # 4D output tensor is thus of shape (batch_size, nkerns[1], 4, 4) layer1 = LeNetConvPoolLayer( rng, input=layer0.output, image_shape=(batch_size, nkerns[0], 12, 12), filter_shape=(nkerns[1], nkerns[0], 5, 5), poolsize=(2, 2) ) # the HiddenLayer being fully-connected, it operates on 2D matrices of # shape (batch_size, num_pixels) (i.e matrix of rasterized images). # This will generate a matrix of shape (batch_size, nkerns[1] * 4 * 4), # or (500, 50 * 4 * 4) = (500, 800) with the default values. layer2_input = layer1.output.flatten(2) # construct a fully-connected sigmoidal layer layer2 = HiddenLayer( rng, input=layer2_input, n_in=nkerns[1] * 4 * 4, n_out=500, activation=T.tanh ) # classify the values of the fully-connected sigmoidal layer layer3 = LogisticRegression(input=layer2.output, n_in=500, n_out=10) # the cost we minimize during training is the NLL of the model cost = layer3.negative_log_likelihood(y) # create a function to compute the mistakes that are made by the model test_model = theano.function( [index], layer3.errors(y), givens={ x: test_set_x[index * batch_size: (index + 1) * batch_size], y: test_set_y[index * batch_size: (index + 1) * batch_size] } ) validate_model = theano.function( [index], layer3.errors(y), givens={ x: valid_set_x[index * batch_size: (index + 1) * batch_size], y: valid_set_y[index * batch_size: (index + 1) * batch_size] } ) # create a list of all model parameters to be fit by gradient descent params = layer3.params + layer2.params + layer1.params + layer0.params # create a list of gradients for all model parameters grads = T.grad(cost, params) # train_model is a function that updates the model parameters by # SGD Since this model has many parameters, it would be tedious to # manually create an update rule for each model parameter. We thus # create the updates list by automatically looping over all # (params[i], grads[i]) pairs. updates = [ (param_i, param_i - learning_rate * grad_i) for param_i, grad_i in zip(params, grads) ] train_model = theano.function( [index], cost, updates=updates, givens={ x: train_set_x[index * batch_size: (index + 1) * batch_size], y: train_set_y[index * batch_size: (index + 1) * batch_size] } ) # end-snippet-1 ############### # TRAIN MODEL # ############### print '... training' # early-stopping parameters patience = 10000 # look as this many examples regardless patience_increase = 2 # wait this much longer when a new best is # found improvement_threshold = 0.995 # a relative improvement of this much is # considered significant validation_frequency = min(n_train_batches, patience / 2) # go through this many # minibatche before checking the network # on the validation set; in this case we # check every epoch best_validation_loss = numpy.inf best_iter = 0 test_score = 0. start_time = timeit.default_timer() epoch = 0 done_looping = False while (epoch < n_epochs) and (not done_looping): epoch = epoch + 1 for minibatch_index in xrange(n_train_batches): iter = (epoch - 1) * n_train_batches + minibatch_index if iter % 100 == 0: print 'training @ iter = ', iter cost_ij = train_model(minibatch_index) if (iter + 1) % validation_frequency == 0: # compute zero-one loss on validation set validation_losses = [validate_model(i) for i in xrange(n_valid_batches)] this_validation_loss = numpy.mean(validation_losses) print('epoch %i, minibatch %i/%i, validation error %f %%' % (epoch, minibatch_index + 1, n_train_batches, this_validation_loss * 100.)) # if we got the best validation score until now if this_validation_loss < best_validation_loss: #improve patience if loss improvement is good enough if this_validation_loss < best_validation_loss * \ improvement_threshold: patience = max(patience, iter * patience_increase) # save best validation score and iteration number best_validation_loss = this_validation_loss best_iter = iter # test it on the test set test_losses = [ test_model(i) for i in xrange(n_test_batches) ] test_score = numpy.mean(test_losses) print((' epoch %i, minibatch %i/%i, test error of ' 'best model %f %%') % (epoch, minibatch_index + 1, n_train_batches, test_score * 100.)) if patience <= iter: done_looping = True break end_time = timeit.default_timer() print('Optimization complete.') print('Best validation score of %f %% obtained at iteration %i, ' 'with test performance %f %%' % (best_validation_loss * 100., best_iter + 1, test_score * 100.)) print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] + ' ran for %.2fm' % ((end_time - start_time) / 60.))
def train_lenet5(train_set_x, train_set_y, params, batch_size, learning_rate=0.01, nkerns=[20,50], test=False): """ Trains LeNet-5 on MNIST dataset, and returns trained parameters on completion. :type train_set: list of floats :param train_set: training samples (x- and y-values) for training :type learning_rate: float :param learning_rate: learning rate used (factor for the stochastic gradient) :type params: list of tuples of floats :param params: list of tuple of parameters from Supervisor. Takes the form [(W_layer0, b_layer0), (W_layer1, b_layer1), (W_layer2, b_layer2), (W_layer3, b_layer3)] :type batch_size: int :param batch_size: size of training batch :type nkerns: list of ints :param nkerns: number of kernels on each layer Output: tuple of LeNet-5 parameters by layer, in this format: ( (W_layer0, b_layer0), ..., (W_layer3, b_layer3) ) """ rng = numpy.random.RandomState(23455) # compute number of minibatches for training, validation and testing n_train_batches = 100 #n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch x = T.matrix('x') # the data is presented as rasterized images y = T.ivector('y') # the labels are presented as 1D vector of # [int] labels ishape = (28,28) # this is the size of MNIST images print ' ... building the model' # Reshape matrix of rasterized images of shape (batch_size,28*28) # to a 4D tensor, compatible with our LeNetConvPoolLayer layer0_input = x.reshape((batch_size,1,28,28)) # Construct the first convolutional pooling layer: # filtering reduces the image size to (28-5+1,28-5+1)=(24,24) # maxpooling reduces this further to (24/2,24/2) = (12,12) # 4D output tensor is thus of shape (batch_size,nkerns[0],12,12) layer0 = LeNetConvPoolLayer(rng, input=layer0_input, image_shape=(batch_size,1,28,28), W_values = params[0][0], b_values = params[0][1], filter_shape=(nkerns[0],1,5,5), poolsize=(2,2)) # Construct the second convolutional pooling layer # filtering reduces the image size to (12-5+1,12-5+1)=(8,8) # maxpooling reduces this further to (8/2,8/2) = (4,4) # 4D output tensor is thus of shape (nkerns[0],nkerns[1],4,4) layer1 = LeNetConvPoolLayer(rng, input=layer0.output, image_shape=(batch_size,nkerns[0],12,12), W_values = params[1][0], b_values = params[1][1], filter_shape=(nkerns[1],nkerns[0],5,5), poolsize=(2,2)) # the TanhLayer being fully-connected, it operates on 2D matrices of # shape (batch_size,num_pixels) (i.e matrix of rasterized images). # This will generate a matrix of shape (20,32*4*4) = (20,512) layer2_input = layer1.output.flatten(2) # construct a fully-connected sigmoidal layer layer2 = HiddenLayer(rng, input=layer2_input, n_in=nkerns[1]*4*4, n_out=120, activation = T.tanh, W_values = params[2][0], b_values = params[2][1]) # classify the values of the fully-connected sigmoidal layer layer3 = LogisticRegression(input=layer2.output, n_in=120, n_out=10, W_values=params[3][0], b_values=params[3][1]) # the cost we minimize during training is the NLL of the model cost = layer3.negative_log_likelihood(y) # create a list of all model parameters to be fit by gradient descent params = layer3.params + layer2.params + layer1.params + layer0.params # create a list of gradients for all model parameters grads = T.grad(cost, params) # train_model is a function that updates the model parameters by SGD # Since this model has many parameters, it would be tedious to manually # create an update rule for each model parameter. We thus create the updates # dictionary by automatically looping over all (params[i],grads[i]) pairs. updates = {} for param_i, grad_i in zip(params, grads): updates[param_i] = param_i - learning_rate * grad_i train_model = theano.function([index], cost, updates=updates, givens = {x: train_set_x, y: train_set_y}, mode='FAST_RUN') print " training lenet-5..." start_time = time.clock() epoch = 0 done_looping = False while (epoch < batch_size/100) and (not done_looping): epoch = epoch + 1 for minibatch_index in xrange(n_train_batches): iter = epoch * n_train_batches + minibatch_index cost_ij = train_model(minibatch_index) end_time = time.clock() print " worker training complete." print " %i samples analyzed in %.2fm" % (batch_size, (end_time-start_time)/60.) return ((layer0.params[0].get_value(), layer0.params[1].get_value()), (layer1.params[0].get_value(), layer1.params[1].get_value()), (layer2.params[0].get_value(), layer2.params[1].get_value()), (layer3.params[0].get_value(), layer3.params[1].get_value()))