コード例 #1
0
def test_all_scalar_output_fuzzy():
    """
    Test output for fuzzy factors, i.e. means in [0,1]
    """

    L = 3

    for model in aux.canonical_loms():
        for randiter in range(3):

            z = np.random.rand(L)
            u = np.random.rand(L)

            numba_fct = lupd.get_scalar_output_function_2d(model, fuzzy=True)
            numba_out = numba_fct(z, u)
            python_out = scalar_output_python_fuzzy(model, z, u)

            try:
                assert abs(numba_out - python_out) < 1e-12
            except:
                import pdb
                pdb.set_trace()
                raise ValueError(
                    'Fuzzy scalar output function for ' +
                    model + ' failed.')
コード例 #2
0
def test_all_3D_LOMs():

    operators = ['AND', 'NAND', 'OR', 'NOR', 'XOR', 'NXOR']
    # operators = ['OR', 'AND']
    machines = [
        x[0] + '-' + x[1] for x in list(itertools.product(operators, repeat=2))
    ]

    for machine in aux.canonical_loms():  # machines:

        N = 50
        D = 10
        L = 3

        Z = np.array(np.random.rand(N, L) > .5, dtype=np.int8)
        U = np.array(np.random.rand(D, L) > .5, dtype=np.int8)
        V = np.array(np.random.rand(D, L) > .5, dtype=np.int8)
        # generate_data_fast is not available for all machines
        X = aux.lom_generate_data([2 * Z - 1, 2 * U - 1, 2 * V - 1],
                                  model=machine)

        orm = lom.Machine()

        data = orm.add_matrix(X, fixed=True)
        layer = orm.add_layer(latent_size=L, child=data, model=machine)
        layer.z.val = (1 - 2 * layer.invert_factors) * (2 * Z - 1)
        layer.u.val = (1 - 2 * layer.invert_factors) * (2 * U - 1)
        layer.v.val = (1 - 2 * layer.invert_factors) * (2 * V - 1)

        # we initialise with ground truth, hence set lbda large to avoid effectively
        # random initialisation
        layer.lbda.val = 3.0

        orm.infer(burn_in_min=10, fix_lbda_iters=2)

        try:
            assert np.mean((2 * (layer.output(technique='factor_map') > .5) -
                            1) == data()) > .98
            assert np.mean((2 * (layer.output(technique='factor_mean') > .5) -
                            1) == data()) > .98
        except:
            acc = np.mean((2 * (layer.output(technique='factor_mean') > .5) -
                           1) == data())
            print(machine + ' failed with reconstruction accuracy of ' +
                  str(acc))
            # import pdb; pdb.set_trace()
            raise ValueError()
コード例 #3
0
def test_all_scalar_output():
    """
    Test numba implementations against the simple python implementation
    """

    # generate random data
    L = 3

    for model in aux.canonical_loms():
        for randiter in range(10):

            z = 2 * np.array(np.random.rand(L) > .5, dtype=np.int8) - 1
            u = 2 * np.array(np.random.rand(L) > .5, dtype=np.int8) - 1

            numba_fct = lupd.get_scalar_output_function_2d(model, fuzzy=False)

            try:
                assert numba_fct(z, u) == scalar_output_python(model, z, u)
            except:
                raise ValueError(
                    'Scalar output function for ' +
                    model + ' failed.')
コード例 #4
0
def test_densities():

    machines = aux.canonical_loms(level='clans', mode='implemented')

    for machine in machines:

        d = aux.expected_density(machine, L=3, K=2, f=.5)

        N = 200
        D = 200
        L = 3
        Z = np.array(np.random.rand(N, L) > .5, dtype=np.int8)
        U = np.array(np.random.rand(D, L) > .5, dtype=np.int8)
        X = aux.lom_generate_data_fast([2 * Z - 1, 2 * U - 1], model=machine)

        X_train, train_mask = experiments.split_train_test(X, split=.1)

        try:
            assert (np.abs(np.mean(X == 1) - d)) < 5e-2
        except:
            print(np.abs(np.mean(X == 1)))
            print(d)
            print(machine)