コード例 #1
0
def case_1():

    # Read the vehicle model
    vehicle = lomap.Ts()
    vehicle.read_from_file('./vehicle_1.txt')
    # Convert the vehicle model to an MDP
    vehicle_mdp = lomap.Markov()
    vehicle_mdp.mdp_from_det_ts(vehicle)

    # Read the models of the pedestrians
    targets = []
    for i in range(1, 6):
        t = lomap.Markov()
        t.read_from_file('./target_%d.txt' % i)
        targets.append(t)

    formula = '! col U end'

    # Construct the full-state fsa using scheck
    # (full-state ensures proper MDP after product)
    logger.info('Formula: %s' % formula)
    fsa = lomap.Fsa()
    fsa.fsa_from_cosafe_formula(formula)
    fsa.add_trap_state()

    # Classical
    with lomap.Timer(
            'Classical (non-incremental) Method: Case 1 - Avoid pedestrians'):
        lomap.classical_synthesis(vehicle_mdp, fsa, targets, set_props_1)
        pass

    # Incremental
    with lomap.Timer('Incremental Method: Case 1 - Avoid pedestrians'):
        lomap.incremental_synthesis(vehicle_mdp, fsa, targets, set_props_1)
コード例 #2
0
def case_2b():

    # Read the vehicle model
    vehicle = lomap.Ts()
    vehicle.read_from_file('./vehicle_1.txt')
    # Convert the vehicle model to an MDP
    vehicle_mdp = lomap.Markov()
    vehicle_mdp.mdp_from_det_ts(vehicle)

    # Read the models of the pedestrians
    targets = []
    for i in range(1, 6):
        t = lomap.Markov()
        t.read_from_file('./target_%d.txt' % i)
        targets.append(t)

    formula = '( F catch0 | F catch1 | F catch2 | F catch3 ) & ( ! col4 U end )'

    # Construct the full-state fsa using scheck
    # (full-state ensures proper MDP after product)
    logger.info('Formula: %s' % formula)
    fsa = lomap.Fsa()
    fsa.fsa_from_cosafe_formula(formula)
    fsa.add_trap_state()

    # Classical
    with lomap.Timer(
            'Classical (non-incremental) Method: Case 2b - Save at least one friendly'
    ):
        lomap.classical_synthesis(vehicle_mdp, fsa, targets, set_props_2)
        pass

    # Incremental
    targets_inc = [targets[-1]] + targets[:-1]
    assumed_props = [('ped0c2', 'ped1c2', 'ped2c2', 'ped3c2'),
                     ('ped1c2', 'ped2c2', 'ped3c2'), ('ped2c2', 'ped3c2'),
                     ('ped3c2'), ()]

    with lomap.Timer(
            'Incremental Method: Case 2b - Save at least one friendly'):
        lomap.incremental_synthesis(vehicle_mdp, fsa, targets_inc, set_props_2,
                                    assumed_props)
        pass
コード例 #3
0
def case_3b():

    # Read the vehicle model
    vehicle = lomap.Ts()
    vehicle.read_from_file('./vehicle_2.txt')
    # Convert the vehicle model to an MDP
    vehicle_mdp = lomap.Markov()
    vehicle_mdp.mdp_from_det_ts(vehicle)

    # Read the models of the guards
    targets = []
    for i in range(1, 7):
        t = lomap.Markov()
        t.read_from_file('./trap_%d.txt' % i)
        targets.append(t)

    # Reach end safely
    formula = '! unsafe U end'
    # Construct the full-state fsa using scheck
    # (full-state ensures proper MDP after product)
    logger.info('Formula: %s' % formula)
    fsa = lomap.Fsa()
    fsa.fsa_from_cosafe_formula(formula)
    fsa.add_trap_state()
    #fsa.visualize()

    # Classical
    with lomap.Timer('Classical (non-incremental) Method: Case 3b - Order 2'):
        lomap.classical_synthesis(vehicle_mdp, fsa, targets, set_props_3)
        pass

    # Incremental
    targets_inc = [
        targets[2], targets[3], targets[0], targets[1], targets[5], targets[4]
    ]
    with lomap.Timer('Incremental Method: Case 3b - Order 2'):
        lomap.incremental_synthesis(vehicle_mdp, fsa, targets_inc, set_props_3)
        pass
コード例 #4
0
def animate(i):
    global quad, view, planner, cmd, anim_state
    logger.debug('Vehicle location - Frame %d: %s' % (i, (quad.x, quad.y)))
    toggle_local_reqs(i)
    quad.sense()
    if not i % 2:
        # Draw the quad
        view.draw_quad()
    else:
        # Plan and the draw the path for the next time step
        with lomap.Timer('Online Computation - Frame %d:' % i):
            cmd, path = planner.next_command()
        view.draw_path(path)
        quad.move_quad(cmd)
def main():

    Rho = namedtuple('Rho', ['lower', 'upper'])
    rhos = [Rho(lower=0.98, upper=1.04), Rho(lower=0.98, upper=1.04)]
    pdb.set_trace()

    # Case Study 1
    #	with lomap.Timer('IJRR 2013 Case-Study 1'):
    #		r1 = lomap.Ts()
    #		r2 = lomap.Ts()
    #		r1.read_from_file('./robot_1.txt')
    #		r2.read_from_file('./robot_2.txt')
    #		ts_tuple = (r1, r2)
    #		formula = '[]<>gather && [](r1gather -> X(!r1gather U r1upload)) && [](r2gather -> X(!r2gather U r2upload))'
    #		opt_prop = set(['gather'])
    #		logger.info('Formula: %s', formula)
    #		logger.info('opt_prop: %s', opt_prop)
    #		prefix_length, prefixes, suffix_cycle_cost, suffix_cycles = lomap.multi_agent_optimal_run(ts_tuple, formula, opt_prop)
    #		logger.info('Cost: %d', suffix_cycle_cost)
    #		logger.info('Prefix length: %d', prefix_length)
    #		# Find the controls that will produce this run
    #		control_prefixes = []
    #		control_suffix_cycles = []
    #		for i in range(0, len(ts_tuple)):
    #			ts = ts_tuple[i]
    #			control_prefixes.append(ts.controls_from_run(prefixes[i]))
    #			control_suffix_cycles.append(ts.controls_from_run(suffix_cycles[i]))
    #			logger.info('%s run prefix: %s', ts.name, prefixes[i])
    #			logger.info('%s control perfix: %s', ts.name, control_prefixes[i])
    #			logger.info('%s suffix cycle: %s', ts.name, suffix_cycles[i])
    #			logger.info('%s control suffix cycle: %s', ts.name, control_suffix_cycles[i])
    #
    #	logger.info('<><><> <><><> <><><>')

    # Case Study 4
    with lomap.Timer('IJRR 2013 Case-Study 4'):
        r1 = lomap.Ts()
        r2 = lomap.Ts()
        r1.read_from_file('./robot_1.txt')
        r2.read_from_file('./robot_2.txt')
        ts_tuple = (r1, r2)
        pdb.set_trace()
        formula = '[]<>gather && [](gather->(r1gather4 && r2gather2)) && [](r1gather -> X(!r1gather U r1upload)) && [](r2gather -> X(!r2gather U r2upload))'
        opt_prop = set(['r1gather4', 'r2gather2'])
        logger.info('Formula: %s', formula)
        logger.info('opt_prop: %s', opt_prop)
        prefix_length, prefixes, suffix_cycle_cost, suffix_cycles = lomap.multi_agent_optimal_run(
            ts_tuple, formula, opt_prop)
        logger.info('Cost: %d', suffix_cycle_cost)
        logger.info('Prefix length: %d', prefix_length)
        # Find the controls that will produce this run
        control_prefixes = []
        control_suffix_cycles = []
        for i in range(0, len(ts_tuple)):
            ts = ts_tuple[i]
            control_prefixes.append(ts.controls_from_run(prefixes[i]))
            control_suffix_cycles.append(ts.controls_from_run(
                suffix_cycles[i]))
            logger.info('%s run prefix: %s', ts.name, prefixes[i])
            logger.info('%s control perfix: %s', ts.name, control_prefixes[i])
            logger.info('%s suffix cycle: %s', ts.name, suffix_cycles[i])
            logger.info('%s control suffix cycle: %s', ts.name,
                        control_suffix_cycles[i])

    logger.info('<><><> <><><> <><><>')
コード例 #6
0
# Select the case-study to run
case = 'case2'

# Set the mission specification
global_spec, local_spec, prio, init_x, init_y, sensing_range = case_studies[
    case]

# Create the environment
env = Environment(case)

# Create the quadrotor
quad = Quadrotor(env, init_x, init_y, sensing_range)

# Create the view
view = View(env, quad)

with lomap.Timer('Offline Computation'):
    planner = Planner(env, quad, global_spec, local_spec, prio)

# Animation
anim = animation.FuncAnimation(view.fig,
                               animate,
                               frames=list(range(0, 200)),
                               interval=250,
                               repeat=False)
if video_name:
    anim.save(video_name)
    exit(0)

plt.show()