def setUpClass(cls): config = FormatAnalyzer._load_train_config(merge_dicts( get_train_config(), { "javascript": { "feature_extractor": { "left_siblings_window": 1, "right_siblings_window": 1, "parents_depth": 1, "node_features": ["start_line", "reserved", "roles"], }, }, })) base = Path(__file__).parent with lzma.open(str(base / "benchmark.js.xz"), mode="rt") as fin: contents = fin.read() with lzma.open(str(base / "benchmark.uast.xz")) as fin: uast = bblfsh.Node.FromString(fin.read()) file = File(content=bytes(contents, "utf-8"), uast=uast) files = [file, file] cls.fe = FeatureExtractor(language="javascript", **config["javascript"]["feature_extractor"]) cls.fe.extract_features(files) cls.class_representations = cls.fe.composite_class_representations cls.n_classes = len(cls.fe.labels_to_class_sequences) cls.ordinal = cls.return_node_feature(FeatureId.start_line) cls.categorical = cls.return_node_feature(FeatureId.reserved) cls.bag = cls.return_node_feature(FeatureId.roles)
def generate_file_fixes(self, data_service: DataService, changes: Sequence[Change], ) -> Iterator[FileFix]: """ Generate all data required for any type of further processing. Next processing can be comment generation or performance report generation. :param data_service: Connection to the Lookout data retrieval service. :param changes: The list of changes in the pointed state. :return: Iterator with unrendered data per comment. """ log = self._log base_files_by_lang = files_by_language(c.base for c in changes) head_files_by_lang = files_by_language(c.head for c in changes) processed_files_counter = defaultdict(int) processed_fixes_counter = defaultdict(int) for lang, head_files in head_files_by_lang.items(): if lang not in self.model: log.warning("skipped %d written in %s. Rules for %s do not exist in model", len(head_files), lang, lang) continue rules = self.model[lang] config = self.analyze_config[lang] rules = rules.filter_by_confidence(config["confidence_threshold"]) \ .filter_by_support(config["support_threshold"]) for file in filter_files(head_files, rules.origin_config["line_length_limit"], rules.origin_config["overall_size_limit"], log=log): processed_files_counter[lang] += 1 try: prev_file = base_files_by_lang[lang][file.path] except KeyError: prev_file = None lines = None else: lines = sorted(chain.from_iterable(( find_new_lines(prev_file, file), find_deleted_lines(prev_file, file), ))) log.debug("%s %s", file.path, lines) fe = FeatureExtractor(language=lang, **rules.origin_config["feature_extractor"]) feature_extractor_output = fe.extract_features([file], [lines]) if feature_extractor_output is None: submit_event("%s.analyze.%s.parse_failures" % (self.name, lang), 1) if config["report_parse_failures"]: log.warning("Failed to parse %s", file.path) yield FileFix(error="Failed to parse", head_file=file, language=lang, feature_extractor=fe, base_file=prev_file, file_vnodes=[], line_fixes=[], y_pred_pure=None, y=None) else: fixes, file_vnodes, y_pred_pure, y = self._generate_token_fixes( file, fe, feature_extractor_output, data_service.get_bblfsh(), rules) log.debug("%s %d fixes", file.path, len(fixes)) processed_fixes_counter[lang] += len(fixes) yield FileFix(error="", head_file=file, language=lang, feature_extractor=fe, base_file=prev_file, file_vnodes=file_vnodes, line_fixes=fixes, y_pred_pure=y_pred_pure, y=y) for key, val in processed_files_counter.items(): submit_event("%s.analyze.%s.files" % (self.name, key), val) for key, val in processed_fixes_counter.items(): submit_event("%s.analyze.%s.fixes" % (self.name, key), val)
def setUp(self): config = FormatAnalyzer._load_config(get_config()) self.annotated_file = AnnotationManager.from_file(self.file) self.final_config = config["train"]["javascript"] self.extractor = FeatureExtractor( language="javascript", **self.final_config["feature_extractor"]) self.annotated_file = AnnotationManager.from_file(self.file)
def generate_local_test(mcs, case_name, uast, contents): fe_config = FormatAnalyzer._load_config( get_config())["train"]["javascript"] feature_extractor = FeatureExtractor(language="javascript", label_composites=label_composites, **fe_config["feature_extractor"]) file = UnicodeFile(content=contents, uast=uast, path="", language="") _, _, (vnodes_y, _, _, _) = feature_extractor.extract_features([file]) offsets, y_pred, result = cases[case_name] def _test(self): y_cur = deepcopy(self.y) for offset, yi in zip(offsets, y_pred): i = None for i, vnode in enumerate(vnodes_y): # noqa: B007 if offset == vnode.start.offset: break y_cur[i] = yi code_generator = CodeGenerator(self.feature_extractor) pred_vnodes = code_generator.apply_predicted_y( self.vnodes, self.vnodes_y, list(range(len(self.vnodes_y))), FakeRules(y_cur)) generated_file = code_generator.generate(pred_vnodes) self.assertEqual(generated_file, result) return _test
def get_class_sequences_from_code(code: str) -> Sequence[Tuple[int, ...]]: uast = client.parse(filename="", language="javascript", contents=code.encode()).uast extractor = FeatureExtractor(language="javascript", **config) result = extractor.extract_features([UnicodeFile(content=code, uast=uast, path="", language="javascript")]) if result is None: self.fail("Could not parse test code.") _, _, (vnodes_y, _, _, _) = result return [vnode.y for vnode in vnodes_y]
def setUpClass(cls): base = Path(__file__).parent # str() is needed for Python 3.5 with lzma.open(str(base / "benchmark.js.xz"), mode="rt") as fin: contents = fin.read() with lzma.open(str(base / "benchmark.uast.xz")) as fin: uast = bblfsh.Node.FromString(fin.read()) file = File(content=bytes(contents, "utf-8"), uast=uast) cls.files = [file] config = FormatAnalyzer._load_config(get_config())["train"] cls.extractor = FeatureExtractor( language="javascript", **config["javascript"]["feature_extractor"])
def return_features() -> Response: """Featurize the given code.""" body = request.get_json() code = body["code"] babelfish_address = body["babelfish_address"] language = body["language"] client = BblfshClient(babelfish_address) res = client.parse(filename="", contents=code.encode(), language=language) if res.status != 0: abort(500) model = FormatModel().load(str(Path(__file__).parent / "models" / "model.asdf")) if language not in model: raise NotFittedError() rules = model[language] file = UnicodeFile(content=code, uast=res.uast, language="javascript", path="path") config = rules.origin_config["feature_extractor"] config["return_sibling_indices"] = True fe = FeatureExtractor(language=language, **config) res = fe.extract_features([file]) if res is None: abort(500) X, y, (vnodes_y, vnodes, vnode_parents, node_parents, sibling_indices) = res y_pred, rule_winners, rules, grouped_quote_predictions = rules.predict( X=X, vnodes_y=vnodes_y, vnodes=vnodes, feature_extractor=fe) refuse_to_predict = y_pred < 0 checker = UASTStabilityChecker(fe) _, _, _, _, safe_preds = checker.check( y=y, y_pred=y_pred, vnodes_y=vnodes_y, vnodes=vnodes, files=[file], stub=client._stub, vnode_parents=vnode_parents, node_parents=node_parents, rule_winners=rule_winners, grouped_quote_predictions=grouped_quote_predictions) break_uast = [False] * X.shape[0] for wrong_pred in set(range(X.shape[0])).difference(safe_preds): break_uast[wrong_pred] = True labeled_indices = {id(vnode): i for i, vnode in enumerate(vnodes_y)} app.logger.info("returning features of shape %d, %d" % X.shape) app.logger.info("length of rules: %d", len(rules)) return jsonify({ "code": code, "features": _input_matrix_to_descriptions(X, fe), "ground_truths": y.tolist(), "predictions": y_pred.tolist(), "refuse_to_predict": refuse_to_predict.tolist(), "sibling_indices": sibling_indices, "rules": _rules_to_jsonable(rules, fe), "winners": rule_winners.tolist(), "break_uast": break_uast, "feature_names": fe.feature_names, "class_representations": fe.composite_class_representations, "class_printables": fe.composite_class_printables, "vnodes": list(map(partial(_vnode_to_jsonable, labeled_indices=labeled_indices), vnodes)), "config": _mapping_to_jsonable(rules.origin_config)})
def setUpClass(cls): config = FormatAnalyzer._load_config(get_config())["train"] cls.extractor = FeatureExtractor( language="javascript", **config["javascript"]["feature_extractor"]) test_js_code_filepath = Path(__file__).parent / "jquery.layout.js" with open(str(test_js_code_filepath), mode="rb") as f: cls.code = f.read() cls.uast = bblfsh.BblfshClient("0.0.0.0:9432").parse( filename="", language="javascript", contents=cls.code).uast feature_extractor_output = cls.extractor.extract_features([ FakeFile(path="test.py", content=cls.code, uast=cls.uast, language="JavaScript") ]) X, cls.y, (cls.vnodes_y, cls.vnodes, vnode_parents, node_parents) = \ feature_extractor_output
def dump_rule(model: FormatModel, rule_hash: str): """ Print the rule contained in the model by hash. :param model: Trained model. :param rule_hash: 8-char rule hash. :return: Nothing """ for lang in model.languages: rules = model[lang] fe = FeatureExtractor(language=lang, **rules.origin_config["feature_extractor"]) for rule in rules.rules: h = hash_rule(rule, fe) if h == rule_hash: print(lang) print(" " + describe_rule(rule, fe).replace("\t", " "))
def setUpClass(cls): cls.maxDiff = None base = Path(__file__).parent # str() is needed for Python 3.5 with lzma.open(str(base / "benchmark_small.js.xz"), mode="rt") as fin: contents = fin.read() with lzma.open(str(base / "benchmark_small.js.uast.xz")) as fin: uast = bblfsh.Node.FromString(fin.read()) config = FormatAnalyzer._load_train_config(get_train_config()) fe_config = config["javascript"] cls.feature_extractor = FeatureExtractor( language="javascript", label_composites=label_composites, **fe_config["feature_extractor"]) cls.file = File(content=bytes(contents, "utf-8"), uast=uast) cls.X, cls.y, (cls.vnodes_y, cls.vnodes, cls.vnode_parents, cls.node_parents) = \ cls.feature_extractor.extract_features([cls.file])
def quality_report_noisy(bblfsh: str, language: str, confidence_threshold: float, support_threshold: int, precision_threshold: float, dir_output: str, config: Optional[dict] = None, repos: Optional[str] = None) -> None: """ Generate a quality report on the artificial noisy dataset including evaluation curves. :param bblfsh: Babelfish client. Babelfish server should be started accordingly. :param language: Language to consider, others will be discarded. :param confidence_threshold: Confidence threshold to filter relevant rules. :param support_threshold: Support threshold to filter relevant rules. :param precision_threshold: Precision threshold tolerated by the model. \ Limit drawn as a red horizontal line on the figure. :param dir_output: Path to the output directory where to store the quality report in Markdown \ and the precision-recall curve in png format. :param config: FormatAnalyzer config to use. Default one is used if not set. :param repos: Input list of urls to the repositories to analyze. \ Should be strings separated by newlines. If it is None, \ we use the string defined at the beginning of the file. """ log = logging.getLogger("quality_report_noisy") # initialization repo_names = [] last_accepted_rule = {} prediction_rates, precisions, accepted_rules = (defaultdict(list) for _ in range(3)) n_mistakes, prec_max_prediction_rate, confidence_threshold_exp, max_prediction_rate, \ n_rules, n_rules_filtered = ({} for _ in range(6)) if repos is None: repos = REPOSITORIES try: # fetch the the original and noisy repositories client = BblfshClient(bblfsh) log.info("Repositories: %s", repos) with tempfile.TemporaryDirectory() as tmpdirname: for raw in repos.splitlines(): repo_path, clean_commit, noisy_commit = raw.split(",") repo = repo_path.split("/")[-1] log.info("Fetching %s", repo_path) git_dir = os.path.join(tmpdirname, repo) git_dir_noisy = os.path.join(tmpdirname, repo + "_noisy") cmd1 = "git clone --single-branch --branch master %s %s" % ( repo_path, git_dir) cmd2 = "git clone --single-branch --branch style-noise-1-per-file %s %s" \ % (repo_path, git_dir_noisy) try: for cmd in (cmd1, cmd2): log.debug("Running: %s", cmd) subprocess.check_call(cmd.split()) except subprocess.CalledProcessError as e: raise ConnectionError("Unable to fetch repository %s" % repo_path) from e # train the model on the original repository ref = ReferencePointer(repo_path, "HEAD", clean_commit) model_path = os.path.join(git_dir, "model.asdf") format_model = train(training_dir=git_dir, ref=ref, output_path=model_path, language=language, bblfsh=bblfsh, config=config, log=log) rules = format_model[language] # extract the raw data and the diff from the repositories input_pattern = os.path.join(git_dir, "**", "*.js") input_pattern_noisy = os.path.join(git_dir_noisy, "**", "*.js") true_content = get_content_from_repo(input_pattern) noisy_content = get_content_from_repo(input_pattern_noisy) true_files, noisy_files, start_changes = get_difflib_changes( true_content, noisy_content) if not true_files: raise ValueError( "Noisy repo should count at least one artificial mistake" ) log.info( "Number of files modified by adding style noise: %d / %d", len(true_files), len(true_content)) del true_content, noisy_content # extract the features feature_extractor = FeatureExtractor( language=language, **rules.origin_config["feature_extractor"]) vnodes_y_true = files2vnodes(true_files, feature_extractor, rules, client) mispreds_noise = files2mispreds(noisy_files, feature_extractor, rules, client, log) # compute the prediction rate and precision score on the artificial noisy dataset diff_mispreds = get_diff_mispreds(mispreds_noise, start_changes) changes_count = len(start_changes) n_rules[repo] = len(rules.rules) rules_id = [(i, r.stats.conf) for i, r in enumerate(rules.rules) if r.stats.conf > confidence_threshold and r.stats.support > support_threshold] rules_id = sorted(rules_id, key=lambda k: k[1], reverse=True) for i in range(len(rules_id)): filtered_mispreds = { k: m for k, m in diff_mispreds.items() if any(r[0] == m.rule for r in rules_id[:i + 1]) } style_fixes = get_style_fixes(filtered_mispreds, vnodes_y_true, true_files, noisy_files, feature_extractor) prediction_rate, precision = compute_metrics( changes_count=changes_count, predictions_count=len(filtered_mispreds), true_positive=len(style_fixes)) prediction_rates[repo].append(round(prediction_rate, 3)) precisions[repo].append(round(precision, 3)) print("prediction rate x:", prediction_rates[repo]) print("precision y:", precisions[repo]) # compute other statistics and quality metrics for the model's evaluation repo_names.append(repo) n_mistakes[repo] = len(true_files) prec_max_prediction_rate[repo] = precisions[repo][-1] max_prediction_rate[repo] = max(prediction_rates[repo]) n_rules_filtered[repo] = len(rules_id) # compute the confidence and prediction rate limit for a given precision threshold for i, (prediction_rate, prec) in enumerate( zip(prediction_rates[repo], precisions[repo])): if prec >= precision_threshold: accepted_rules[repo].append( (i, rules_id[i][1], prediction_rate)) last_accepted_rule[repo] = min(accepted_rules[repo], key=itemgetter(1)) confidence_threshold_exp[repo] = (last_accepted_rule[repo][0], last_accepted_rule[repo][1]) finally: client._channel.close() # compute the index of the last accepted rule according to the maximum confidence threshold limit_conf_id = {} max_confidence_threshold_exp = max(confidence_threshold_exp.values(), key=itemgetter(1)) for repo, rules in accepted_rules.items(): for rule in rules: if rule[1] < max_confidence_threshold_exp[1]: break limit_conf_id[repo] = rule[0] # compile the curves showing the evolutions of the prediction rate and precision score path_to_figure = os.path.join(dir_output, "pr_curves.png") plot_curve(repo_names, prediction_rates, precisions, precision_threshold, limit_conf_id, path_to_figure) # compile the markdown template for the report through jinja2 loader = jinja2.FileSystemLoader( (os.path.join(os.path.dirname(__file__), "..", "templates"), ), followlinks=True) env = jinja2.Environment(trim_blocks=True, lstrip_blocks=True, keep_trailing_newline=True) env.globals.update(range=range) template = loader.load(env, "noisy_quality_report.md.jinja2") report = template.render(repos=repo_names, n_mistakes=n_mistakes, prec_max_prediction_rate=prec_max_prediction_rate, confidence_threshold_exp=round( max_confidence_threshold_exp[1], 2), max_prediction_rate=max_prediction_rate, confidence_threshold=confidence_threshold, support_threshold=support_threshold, n_rules=n_rules, n_rules_filtered=n_rules_filtered, path_to_figure=path_to_figure) # write the quality report repo_pathrt = os.path.join(dir_output, "report_noise.md") with open(repo_pathrt, "w", encoding="utf-8") as f: f.write(report)
def train(cls, ptr: ReferencePointer, config: Mapping[str, Any], data_service: DataService, files: Iterator[File], **data) -> FormatModel: """ Train a model given the files available. :param ptr: Git repository state pointer. :param config: configuration dict. :param data: contains "files" - the list of files in the pointed state. :param data_service: connection to the Lookout data retrieval service. :param files: iterator of File records from the data service. :return: AnalyzerModel containing the learned rules, per language. """ _log = logging.getLogger(cls.__name__) train_config = cls._load_config(config)["train"] _log.info("train %s %s %s %s", __version__, ptr.url, ptr.commit, pformat(train_config, width=4096, compact=True)) model = FormatModel().generate(cls, ptr) for language, files in files_by_language(files).items(): try: lang_config = train_config[language] except KeyError: _log.warning("language %s is not supported, skipped", language) continue _log.info("effective train config for %s:\n%s", language, pformat(lang_config, width=120, compact=True)) random_state = lang_config["random_state"] files = filter_files( files, lang_config["line_length_limit"], lang_config["overall_size_limit"], random_state, _log) submit_event("%s.train.%s.files" % (cls.name, language), len(files)) if len(files) == 0: _log.info("zero files after filtering, language %s is skipped.", language) continue try: fe = FeatureExtractor(language=language, **lang_config["feature_extractor"]) except ImportError: _log.warning("skipped %d %s files - not supported", len(files), language) continue else: _log.info("training on %d %s files", len(files), language) train_files, test_files = FormatAnalyzer.split_train_test( files, lang_config["test_dataset_ratio"], random_state=random_state) # ensure that the features are reproducible train_files = sorted(train_files, key=lambda x: x.path) test_files = sorted(test_files, key=lambda x: x.path) X_train, y_train, _ = fe.extract_features(train_files) X_train, selected_features = fe.select_features(X_train, y_train) if test_files: X_test, y_test, _ = fe.extract_features(test_files) if lang_config["test_dataset_ratio"]: _log.debug("Real test ratio is %.3f", X_test.shape[0] / (X_test.shape[0] + X_train.shape[0]) if test_files else 0) lang_config["feature_extractor"]["selected_features"] = selected_features lang_config["feature_extractor"]["label_composites"] = fe.labels_to_class_sequences lower_bound_instances = lang_config["lower_bound_instances"] if X_train.shape[0] < lower_bound_instances: _log.warning("skipped %d %s files: too few samples (%d/%d)", len(files), language, X_train.shape[0], lower_bound_instances) continue _log.info("extracted %d samples to train, searching for the best hyperparameters", X_train.shape[0]) optimizer = Optimizer(**lang_config["optimizer"], random_state=random_state) best_score, best_params = optimizer.optimize(X_train, y_train) if _log.isEnabledFor(logging.DEBUG): _log.debug("score of the best estimator found: %.6f", best_score) _log.debug("params of the best estimator found: %s", str(best_params)) _log.debug("training the model with complete data") else: _log.info("finished hyperopt at %.6f, training the full model", -best_score) lang_config["trainable_rules"].update(best_params) trainable_rules = TrainableRules(**lang_config["trainable_rules"], random_state=random_state, origin_config=lang_config) trainable_rules.fit(X_train, y_train) importances = trainable_rules.feature_importances_ _log.debug( "feature importances from %s:\n\t%s", lang_config["trainable_rules"]["base_model_name"], "\n\t".join("%-55s %.5E" % (fe.feature_names[i], importances[i]) for i in numpy.argsort(-importances)[:25] if importances[i] > 1e-5)) trainable_rules.prune_categorical_attributes(fe) _log.info("obtained %d rules, generating the classification report", len(trainable_rules.rules)) trainable_rules.rules.generate_classification_report( X_train, y_train, "train", fe.composite_class_representations) if test_files: trainable_rules.rules.generate_classification_report( X_test, y_test, "test", fe.composite_class_representations) submit_event("%s.train.%s.rules" % (cls.name, language), len(trainable_rules.rules)) if trainable_rules.rules.rules: model[language] = trainable_rules.rules else: _log.warning("model for %s has 0 rules. Skipped.", language) _log.info("trained %s", model) return model
def train(cls, ptr: ReferencePointer, config: Mapping[str, Any], data_service: DataService, **data) -> FormatModel: """ Train a model given the files available. :param ptr: Git repository state pointer. :param config: configuration dict. :param data: contains "files" - the list of files in the pointed state. :param data_service: connection to the Lookout data retrieval service. :return: AnalyzerModel containing the learned rules, per language. """ _log = logging.getLogger(cls.__name__) _log.info("train %s %s %s", ptr.url, ptr.commit, pformat(config, width=4096, compact=True)) model = FormatModel().construct(cls, ptr) config = cls._load_train_config(config) for language, files in files_by_language(data["files"]).items(): try: lang_config = config[language] except KeyError: _log.warning("language %s is not supported, skipped", language) continue files = filter_files(files, lang_config["line_length_limit"], _log) submit_event("%s.train.%s.files" % (cls.name, language), len(files)) if len(files) == 0: _log.info( "zero files after filtering, language %s is skipped.", language) continue try: fe = FeatureExtractor(language=language, **lang_config["feature_extractor"]) except ImportError: _log.warning("skipped %d %s files - not supported", len(files), language) continue else: _log.info("training on %d %s files", len(files), language) # we sort to make the features reproducible X, y, _ = fe.extract_features(sorted(files, key=lambda x: x.path)) X, selected_features = fe.select_features(X, y) lang_config["feature_extractor"][ "selected_features"] = selected_features lang_config["feature_extractor"][ "label_composites"] = fe.labels_to_class_sequences lower_bound_instances = lang_config["lower_bound_instances"] if X.shape[0] < lower_bound_instances: _log.warning("skipped %d %s files: too few samples (%d/%d)", len(files), language, X.shape[0], lower_bound_instances) continue _log.debug("training the rules model") optimizer = Optimizer( n_jobs=lang_config["n_jobs"], n_iter=lang_config["n_iter"], cv=lang_config["cv"], random_state=lang_config["trainable_rules"]["random_state"]) best_score, best_params = optimizer.optimize(X, y) _log.debug("score of the best estimator found: %.6f", best_score) _log.debug("params of the best estimator found: %s", str(best_params)) _log.debug("training the model with complete data") lang_config["trainable_rules"].update(best_params) trainable_rules = TrainableRules(**lang_config["trainable_rules"], origin_config=lang_config) trainable_rules.fit(X, y) importances = trainable_rules.feature_importances_ _log.debug( "feature importances from %s:\n\t%s", lang_config["trainable_rules"]["base_model_name"], "\n\t".join( "%-55s %.5E" % (fe.feature_names[i], importances[i]) for i in numpy.argsort(-importances)[:25] if importances[i] > 1e-5)) submit_event("%s.train.%s.rules" % (cls.name, language), len(trainable_rules.rules)) # TODO(vmarkovtsev): save the achieved precision, recall, etc. to the model # throw away imprecise classes if trainable_rules.rules.rules: model[language] = trainable_rules.rules else: _log.warning("model for %s has 0 rules. Skipping.", language) _log.info("trained %s", model) return model
def setUp(self): self.fe = FeatureExtractor(language=self.language, **self.config)
def test_generate_new_line(self): self.maxDiff = None expected_res = { "nothing changed": [], "remove new line in the end of 4th line": None, "indentation in the beginning": [" import { makeToast } from '../../common/app/Toasts/redux';"], "remove indentation in the 4th line till the end": [" return Object.keys(flash)", " }"], "new line between 6th and 7th regular code lines": ["\n return messages.map(message => ({"], "new line in the middle of the 7th code line with indentation increase": [" return messages\n .map(message => ({", " })"], "new line in the middle of the 7th code line with indentation decrease": [" return messages\n .map(message => ({", " })"], "new line in the middle of the 7th code line without indentation increase": [" return messages\n .map(message => ({"], "change quotes": ['import { makeToast } from "../../common/app/Toasts/redux";'], "remove indentation decrease 11th line": [" }));"], "change indentation decrease to indentation increase 11th line": [" }));"], "change indentation decrease to indentation increase 11th line but keep the rest": [" }));", "})"], } base = Path(__file__).parent # str() is needed for Python 3.5 with lzma.open(str(base / "benchmark_small.js.xz"), mode="rt") as fin: contents = fin.read() with lzma.open(str(base / "benchmark_small.js.uast.xz")) as fin: uast = bblfsh.Node.FromString(fin.read()) config = FormatAnalyzer._load_config(get_config()) fe_config = config["train"]["javascript"] for case in expected_res: offsets, y_pred, _ = cases[case] feature_extractor = FeatureExtractor( language="javascript", label_composites=label_composites, **fe_config["feature_extractor"]) file = UnicodeFile(content=contents, uast=uast, path="", language="") X, y, (vnodes_y, vnodes, vnode_parents, node_parents) = \ feature_extractor.extract_features([file]) y_cur = deepcopy(y) for offset, yi in zip(offsets, y_pred): i = None for i, vnode in enumerate(vnodes_y): # noqa: B007 if offset == vnode.start.offset: break y_cur[i] = yi code_generator = CodeGenerator(feature_extractor) pred_vnodes = code_generator.apply_predicted_y( vnodes, vnodes_y, list(range(len(vnodes_y))), FakeRules(y_cur)) res = [] for gln in FormatAnalyzer._group_line_nodes( y, y_cur, vnodes_y, pred_vnodes, [1] * len(y)): line, (line_y, line_y_pred, line_vnodes_y, line_vnodes, line_rule_winners) = gln new_code_line = code_generator.generate_new_line(line_vnodes) res.append(new_code_line) if expected_res[case] is not None: # None means that we delete some lines. We are not handle this properly now. self.assertEqual(res, expected_res[case], case)
def visualize(input_filename: str, bblfsh: str, language: str, model_path: str) -> None: """Visualize the errors made on a single file.""" model = FormatModel().load(model_path) rules = model[language] print("Model parameters: %s" % rules.origin) print("Stats about rules: %s" % rules) client = BblfshClient(bblfsh) file = prepare_file(input_filename, client, language) fe = FeatureExtractor(language=language, **rules.origin_config["feature_extractor"]) X, y, vnodes_y, vnodes = fe.extract_features([file]) y_pred, _, _ = rules.predict(X, vnodes_y, vnodes, fe) # collect lines with mispredictions - could be removed mispred_lines = set() lines = set() for gt, pred, node in zip(y, y_pred, vnodes_y): lines.add((node.path, node.start.line)) if gt != pred: mispred_lines.add((node.path, node.start.line)) print("Number of lines with mispredictions: %s out of %s mispredicted" % (len(mispred_lines), len(lines))) # collect mispredictions and all other predictions for each line with mistake mispred = defaultdict(list) for gt, pred, node in zip(y, y_pred, vnodes_y): if (node.path, node.start.line) in mispred_lines: mispred[(node.path, node.start.line)].append(Misprediction(gt, pred, node)) # sort each line for value in mispred.values(): value.sort(key=lambda k: k.node.start.offset) # final mispredictions final_mispred = [] for line in sorted(mispred): gt = [m.y for m in mispred[line]] pred = [m.pred for m in mispred[line]] s = SequenceMatcher(None, gt, pred) blocks = s.get_matching_blocks() if blocks[0].a != 0: # mispredictions before the first matching block final_mispred.extend(mispred[line][:blocks[0].a]) for i in range(len(blocks) - 1): final_mispred.extend(mispred[line][blocks[i].a:blocks[i + 1].a]) if blocks[-1].a != len(mispred[line]): # mispredictions after the last matching block final_mispred.extend(mispred[line][blocks[-1].a:]) mispred = sorted([misp for misp in final_mispred if misp.y != misp.pred], key=lambda r: r.node.start.offset) new_content = ENDC old_content = file.content.decode("utf-8") for i in range(len(mispred)): wrong = mispred[i] start = wrong.node.start.offset end = wrong.node.end.offset if end == start: end = start + len(wrong.node.value) if i == 0 and start != 0: new_content += old_content[:start] new_content += GREEN + CLASSES[wrong.y] + RED + CLASSES[ wrong.pred] + ENDC if i == len(mispred) - 1: if end != len(old_content): new_content += old_content[end:] else: new_content += old_content[end:mispred[i + 1].node.start.offset] print("Visualization:\n" + new_content)
def setUp(self): config = FormatAnalyzer._load_config(get_config())["train"] self.extractor = FeatureExtractor(language="javascript", **config["javascript"]["feature_extractor"])
def setUp(self): config = FormatAnalyzer._load_train_config(get_train_config()) self.final_config = config["javascript"] self.extractor = FeatureExtractor( language="javascript", **self.final_config["feature_extractor"])