コード例 #1
0
 def test_describe_rule_bag(self):
     name, indices, feature = self.bag
     activated = randint(0, len(indices) - 1)
     activated_name = feature.names[activated]
     not_activated = randint(0, len(indices) - 1)
     not_activated_name = feature.names[not_activated]
     picked_class = randint(0, self.n_classes - 1)
     picked_class_name = self.class_representations[picked_class]
     index = indices[activated]
     not_index = indices[not_activated]
     rule = Rule(attrs=[
         RuleAttribute(index, True, 0.5),
         RuleAttribute(not_index, False, 0.5)
     ],
                 stats=RuleStats(picked_class, 0.9, 150),
                 artificial=False)
     self.assertEqual(
         describe_rule(rule, self.fe), "  %s in {%s} and not in {%s}\n"
         "⇒ y = %s\n"
         "Confidence: 0.900. Support: 150." % (
             name,
             activated_name,
             not_activated_name,
             picked_class_name,
         ))
コード例 #2
0
 def _assemble_rules(rules_tree: dict) -> List[Rule]:
     rules = []
     rule_attrs = (
         RuleAttribute(*params)
         for params in zip(rules_tree["features"], rules_tree["cmps"],
                           rules_tree["thresholds"]))
     for cls, conf, length in zip(rules_tree["cls"], rules_tree["conf"],
                                  rules_tree["lengths"]):
         rules.append(
             Rule(tuple(islice(rule_attrs, int(length))),
                  RuleStats(cls, conf)))
     return rules
コード例 #3
0
 def test_describe_rule_ordinal(self):
     name, indices, feature = self.ordinal
     picked_class = randint(0, self.n_classes - 1)
     picked_class_name = self.class_representations[picked_class]
     index = indices[0]
     rule = Rule(attrs=[(index, True, 4.5)], stats=RuleStats(picked_class, 0.9, 150),
                 artificial=False)
     self.assertEqual(describe_rule(rule, self.fe),
                      "  %s ≥ %d\n"
                      "⇒ y = %s\n"
                      "Confidence: 0.900. Support: 150." % (
                          name, ceil(4.5), picked_class_name,
                      ))
コード例 #4
0
 def test_describe_rule_parent(self):
     feature_id = FeatureId.internal_type
     index = self.fe.feature_to_indices[FeatureGroup.parents][0][feature_id][0]
     picked_class = randint(0, self.n_classes - 1)
     picked_class_name = self.class_representations[picked_class]
     rule = Rule(attrs=[(index, True, 4)], stats=RuleStats(picked_class, 0.9, 150),
                 artificial=False)
     self.assertEqual(describe_rule(rule, self.fe),
                      "  ^1.%s = AnyTypeAnnotation\n"
                      "⇒ y = %s\n"
                      "Confidence: 0.900. Support: 150." % (
                          feature_id.name, picked_class_name,
                      ))
コード例 #5
0
 def test_describe_rule_right(self):
     feature_id = FeatureId.length
     index = self.fe.feature_to_indices[FeatureGroup.right][0][feature_id][0]
     picked_class = randint(0, self.n_classes - 1)
     picked_class_name = self.class_representations[picked_class]
     rule = Rule(attrs=[(index, True, 4.5)], stats=RuleStats(picked_class, 0.9, 150),
                 artificial=False)
     self.assertEqual(describe_rule(rule, self.fe),
                      "  +1.%s ≥ %d\n"
                      "⇒ y = %s\n"
                      "Confidence: 0.900. Support: 150." % (
                          feature_id.name, ceil(4.5), picked_class_name,
                      ))
コード例 #6
0
ファイル: model.py プロジェクト: src-d/style-analyzer
 def _assemble_rules(rules_tree: dict) -> List[Rule]:
     rules = []
     rule_attrs = (
         RuleAttribute(*params)
         for params in zip(rules_tree["features"], rules_tree["cmps"],
                           rules_tree["thresholds"]))
     for cls, conf, support, artificial, length in zip(
             rules_tree["cls"], rules_tree["conf"], rules_tree["support"],
             rules_tree["artificial"], rules_tree["lengths"]):
         rules.append(
             Rule(attrs=tuple(islice(rule_attrs, int(length))),
                  stats=RuleStats(int(cls), float(conf), int(support)),
                  artificial=bool(artificial)))
     return rules
コード例 #7
0
def create_rule():
    cls = DescriptionsTests
    feature_id = FeatureId.internal_type
    index1 = cls.fe.feature_to_indices[FeatureGroup.parents][0][feature_id][0]
    index2 = cls.fe.feature_to_indices[FeatureGroup.right][0][feature_id][0]
    index3 = cls.categorical[1][3]
    rule = Rule(attrs=[
        RuleAttribute(index1, True, 4),
        RuleAttribute(index2, True, 4.5),
        RuleAttribute(index3, True, 0.5)
    ],
                stats=RuleStats(2, 0.9, 150),
                artificial=False)
    return rule
コード例 #8
0
 def test_describe_rule_categorical(self):
     name, indices, feature = self.categorical
     activated = randint(0, len(indices) - 1)
     activated_name = feature.names[activated]
     picked_class = randint(0, self.n_classes - 1)
     picked_class_name = self.class_representations[picked_class]
     index = indices[activated]
     rule = Rule(attrs=[(index, True, 0.5)], stats=RuleStats(picked_class, 0.9, 150),
                 artificial=False)
     self.assertEqual(describe_rule(rule, self.fe),
                      "  %s = %s\n"
                      "⇒ y = %s\n"
                      "Confidence: 0.900. Support: 150." % (
                          name, activated_name, picked_class_name,
                      ))
コード例 #9
0
def describe_rule_attrs(rule: Rule,
                        feature_extractor: FeatureExtractor) -> Sequence[str]:
    """
    Format the rule as text.

    We take features metadata to convert the integer indices to human-readable names.

    :param rule: The rule to describe.
    :param feature_extractor: The FeatureExtractor used to create those rules.
    :return: The description of the rule.
    """
    result = []

    for feature, feature_id, splits, node_index, group in rule.group_features(
            feature_extractor):
        desc = describe_rule_splits(
            feature, "%s%s" % (group.format(node_index), feature_id.name),
            splits)
        result.append(desc)

    return result
コード例 #10
0
 def __getitem__(self, item):
     return Rule(tuple(), RuleStats(self.ys[item], 1., 1000), False)