コード例 #1
0
ファイル: test_linalg.py プロジェクト: cmsquared/loopy
def test_small_batched_matvec(ctx_factory):
    dtype = np.float32
    ctx = ctx_factory()

    order = "C"

    K = 9997  # noqa
    Np = 36  # noqa

    knl = lp.make_kernel(
            "{[i,j,k]: 0<=k<K and 0<= i,j < %d}" % Np,
            [
                "result[k, i] = sum(j, d[i, j]*f[k, j])"
                ],
            [
                lp.GlobalArg("d", dtype, shape=(Np, Np), order=order),
                lp.GlobalArg("f", dtype, shape=("K", Np), order=order),
                lp.GlobalArg("result", dtype, shape=("K", Np), order=order),
                lp.ValueArg("K", np.int32, approximately=1000),
                ], name="batched_matvec", assumptions="K>=1")

    seq_knl = knl

    align_bytes = 64
    knl = lp.add_prefetch(knl, 'd[:,:]')
    pad_mult = lp.find_padding_multiple(knl, "f", 0, align_bytes)
    knl = lp.split_array_dim(knl, ("f", 0), pad_mult)
    knl = lp.add_padding(knl, "f", 0, align_bytes)

    lp.auto_test_vs_ref(seq_knl, ctx, knl,
            op_count=[K*2*Np**2/1e9], op_label=["GFlops"],
            parameters=dict(K=K))
コード例 #2
0
ファイル: test_tim.py プロジェクト: inducer/loopy
def test_tim2d(ctx_factory):
    dtype = np.float32
    ctx = ctx_factory()
    order = "C"

    n = 8

    from pymbolic import var
    K_sym = var("K")

    field_shape = (K_sym, n, n)

    # K - run-time symbolic
    knl = lp.make_kernel(ctx.devices[0],
            "[K] -> {[i,j,e,m,o,gi]: 0<=i,j,m,o<%d and 0<=e<K and 0<=gi<3}" % n,
           [
            "ur(a,b) := sum_float32(@o, D[a,o]*u[e,o,b])",
            "us(a,b) := sum_float32(@o, D[b,o]*u[e,a,o])",

            "lap[e,i,j]  = "
            "  sum_float32(m, D[m,i]*(G[0,e,m,j]*ur(m,j) + G[1,e,m,j]*us(m,j)))"
            "+ sum_float32(m, D[m,j]*(G[1,e,i,m]*ur(i,m) + G[2,e,i,m]*us(i,m)))"

            ],
            [
            lp.ArrayArg("u", dtype, shape=field_shape, order=order),
            lp.ArrayArg("lap", dtype, shape=field_shape, order=order),
            lp.ArrayArg("G", dtype, shape=(3,)+field_shape, order=order),
#            lp.ConstantArrayArg("D", dtype, shape=(n, n), order=order),
            lp.ArrayArg("D", dtype, shape=(n, n), order=order),
#            lp.ImageArg("D", dtype, shape=(n, n)),
            lp.ValueArg("K", np.int32, approximately=1000),
            ],
             name="semlap2D", assumptions="K>=1")

    unroll = 32

    seq_knl = knl
    knl = lp.add_prefetch(knl, "D", ["m", "j", "i","o"], default_tag="l.auto")
    knl = lp.add_prefetch(knl, "u", ["i", "j",  "o"], default_tag="l.auto")
    knl = lp.precompute(knl, "ur", np.float32, ["a", "b"], default_tag="l.auto")
    knl = lp.precompute(knl, "us", np.float32, ["a", "b"], default_tag="l.auto")
    knl = lp.split_iname(knl, "e", 1, outer_tag="g.0")#, slabs=(0, 1))

    knl = lp.tag_inames(knl, dict(i="l.0", j="l.1"))
    knl = lp.tag_inames(knl, dict(o="unr"))
    knl = lp.tag_inames(knl, dict(m="unr"))


#    knl = lp.add_prefetch(knl, "G", [2,3], default_tag=None) # axis/argument indices on G
    knl = lp.add_prefetch(knl, "G", [2,3], default_tag="l.auto") # axis/argument indices on G

    kernel_gen = lp.generate_loop_schedules(knl)
    kernel_gen = lp.check_kernels(kernel_gen, dict(K=1000))

    K = 1000
    lp.auto_test_vs_ref(seq_knl, ctx, kernel_gen,
            op_count=K*(n*n*n*2*2 + n*n*2*3 + n**3 * 2*2)/1e9,
            op_label="GFlops",
            parameters={"K": K})
コード例 #3
0
ファイル: test_linalg.py プロジェクト: cmsquared/loopy
def test_troublesome_premagma_fermi_matrix_mul(ctx_factory):
    dtype = np.float32
    ctx = ctx_factory()
    order = "C"

    n = 6*16*2

    knl = lp.make_kernel(
            "{[i,j,k]: 0<=i,j,k<%d}" % n,
            [
                "c[i, j] = sum(k, a[i, k]*b[k, j])"
                ],
            [
                lp.GlobalArg("a", dtype, shape=(n, n), order=order),
                lp.GlobalArg("b", dtype, shape=(n, n), order=order),
                lp.GlobalArg("c", dtype, shape=(n, n), order=order),
                ],
            name="matmul")

    seq_knl = knl

    i_reg = 2
    j_reg = 2
    i_chunks = 16
    j_chunks = 16
    knl = lp.split_iname(knl, "i", i_reg*i_chunks, outer_tag="g.0")
    knl = lp.split_iname(knl, "i_inner", i_reg, outer_tag="l.0", inner_tag="ilp")
    knl = lp.split_iname(knl, "j", j_reg*j_chunks, outer_tag="g.1")
    knl = lp.split_iname(knl, "j_inner", j_reg, outer_tag="l.1", inner_tag="ilp")
    knl = lp.split_iname(knl, "k", 16)
    knl = lp.add_prefetch(knl, 'a', ["k_inner", "i_inner_inner", "i_inner_outer"])

    lp.auto_test_vs_ref(seq_knl, ctx, knl,
            op_count=[2*n**3/1e9], op_label=["GFlops"],
            parameters={})
コード例 #4
0
ファイル: test_linalg.py プロジェクト: inducer/loopy
def test_variable_size_matrix_mul(ctx_factory):
    ctx = ctx_factory()

    if (not ctx.devices[0].image_support
            or ctx.devices[0].platform.name == "Portable Computing Language"):
        pytest.skip("crashes on pocl")

    n = get_suitable_size(ctx)

    knl = lp.make_kernel(
            "{[i,j,k]: 0<=i,j,k<n}",
            "c[i, j] = sum(k, a[i, k]*b[k, j])")

    knl = lp.add_dtypes(knl, {
        "a": np.float32,
        "b": np.float32,
        })

    ref_knl = knl

    knl = lp.split_iname(knl, "i", 16,
            outer_tag="g.0", inner_tag="l.1",
            slabs=(0, 1))
    knl = lp.split_iname(knl, "j", 16,
            outer_tag="g.1", inner_tag="l.0",
            slabs=(0, 1))
    knl = lp.split_iname(knl, "k", 8, slabs=(0, 1))

    knl = lp.add_prefetch(knl, "a", ["k_inner", "i_inner"], default_tag="l.auto")
    knl = lp.add_prefetch(knl, "b", ["j_inner", "k_inner"], default_tag="l.auto")

    lp.auto_test_vs_ref(ref_knl, ctx, knl,
            op_count=[2*n**3/1e9], op_label=["GFlops"],
            parameters={"n": n})
コード例 #5
0
ファイル: test_linalg.py プロジェクト: cmsquared/loopy
def test_fancy_matrix_mul(ctx_factory):
    dtype = np.float32
    ctx = ctx_factory()

    order = "C"

    n = get_suitable_size(ctx)

    knl = lp.make_kernel(
            "[n] -> {[i,j,k]: 0<=i,j,k<n }",
            [
                "c[i, j] = sum(k, a[i, k]*b[k, j])"
                ],
            [
                lp.GlobalArg("a", dtype, shape="(n, n)", order=order),
                lp.GlobalArg("b", dtype, shape="(n, n)", order=order),
                lp.GlobalArg("c", dtype, shape="(n, n)", order=order),
                lp.ValueArg("n", np.int32, approximately=1000),
                ], name="fancy_matmul", assumptions="n>=1")

    seq_knl = knl

    knl = lp.split_iname(knl, "i", 16, outer_tag="g.0", inner_tag="l.1")
    knl = lp.split_iname(knl, "j", 16, outer_tag="g.1", inner_tag="l.0")
    knl = lp.split_iname(knl, "k", 16, slabs=(0, 1))
    knl = lp.add_prefetch(knl, 'a', ["i_inner", "k_inner"])
    knl = lp.add_prefetch(knl, 'b', ["k_inner", "j_inner"])

    lp.auto_test_vs_ref(seq_knl, ctx, knl,
            op_count=[2*n**3/1e9], op_label=["GFlops"],
            parameters=dict(n=n))
コード例 #6
0
ファイル: test_linalg.py プロジェクト: cmsquared/loopy
def test_plain_matrix_mul(ctx_factory):
    ctx = ctx_factory()
    order = "C"

    n = get_suitable_size(ctx)

    for dtype, check, vec_size in [
            (cl_array.vec.float4, check_float4, 4),
            (np.float32, None, 1),
            ]:
        knl = lp.make_kernel(
                "{[i,j,k]: 0<=i,j,k<%d}" % n,
                [
                    "c[i, j] = sum(k, a[i, k]*b[k, j])"
                    ],
                [
                    lp.GlobalArg("a", dtype, shape=(n, n), order=order),
                    lp.GlobalArg("b", dtype, shape=(n, n), order=order),
                    lp.GlobalArg("c", dtype, shape=(n, n), order=order),
                    ],
                name="matmul")

        ref_knl = knl

        knl = lp.split_iname(knl, "i", 16,
                outer_tag="g.0", inner_tag="l.1")
        knl = lp.split_iname(knl, "j", 16,
                outer_tag="g.1", inner_tag="l.0")
        knl = lp.split_iname(knl, "k", 16)
        knl = lp.add_prefetch(knl, "a", ["k_inner", "i_inner"])
        knl = lp.add_prefetch(knl, "b", ["j_inner", "k_inner", ])

        lp.auto_test_vs_ref(ref_knl, ctx, knl,
                op_count=[vec_size*2*n**3/1e9], op_label=["GFlops"],
                parameters={"n": n}, check_result=check)
コード例 #7
0
ファイル: test_linalg.py プロジェクト: cmsquared/loopy
def test_variable_size_matrix_mul(ctx_factory):
    ctx = ctx_factory()

    n = get_suitable_size(ctx)

    knl = lp.make_kernel(
            "{[i,j,k]: 0<=i,j,k<n}",
            "c[i, j] = sum(k, a[i, k]*b[k, j])")

    knl = lp.add_dtypes(knl, {
        "a": np.float32,
        "b": np.float32,
        })

    ref_knl = knl

    knl = lp.split_iname(knl, "i", 16,
            outer_tag="g.0", inner_tag="l.1",
            slabs=(0, 1))
    knl = lp.split_iname(knl, "j", 16,
            outer_tag="g.1", inner_tag="l.0",
            slabs=(0, 1))
    knl = lp.split_iname(knl, "k", 8, slabs=(0, 1))

    knl = lp.add_prefetch(knl, "a", ["k_inner", "i_inner"])
    knl = lp.add_prefetch(knl, "b", ["j_inner", "k_inner"])

    lp.auto_test_vs_ref(ref_knl, ctx, knl,
            op_count=[2*n**3/1e9], op_label=["GFlops"],
            parameters={"n": n})
コード例 #8
0
ファイル: test_loopy.py プロジェクト: dokempf/loopy
def test_atomic(ctx_factory, dtype):
    ctx = ctx_factory()

    if (
            np.dtype(dtype).itemsize == 8
            and "cl_khr_int64_base_atomics" not in ctx.devices[0].extensions):
        pytest.skip("64-bit atomics not supported on device")

    import pyopencl.version  # noqa
    if (
            cl.version.VERSION < (2015, 2)
            and dtype == np.int64):
        pytest.skip("int64 RNG not supported in PyOpenCL < 2015.2")

    knl = lp.make_kernel(
            "{ [i]: 0<=i<n }",
            "out[i%20] = out[i%20] + 2*a[i] {atomic}",
            [
                lp.GlobalArg("out", dtype, shape=lp.auto, for_atomic=True),
                lp.GlobalArg("a", dtype, shape=lp.auto),
                "..."
                ],
            assumptions="n>0")

    ref_knl = knl
    knl = lp.split_iname(knl, "i", 512)
    knl = lp.split_iname(knl, "i_inner", 128, outer_tag="unr", inner_tag="g.0")
    lp.auto_test_vs_ref(ref_knl, ctx, knl, parameters=dict(n=10000))
コード例 #9
0
ファイル: test_transform.py プロジェクト: cmsquared/loopy
def test_precompute_nested_subst(ctx_factory):
    ctx = ctx_factory()

    knl = lp.make_kernel(
        "{[i,j]: 0<=i<n and 0<=j<5}",
        """
        E:=a[i]
        D:=E*E
        b[i] = D
        """)

    knl = lp.add_and_infer_dtypes(knl, dict(a=np.float32))

    ref_knl = knl

    knl = lp.tag_inames(knl, dict(j="g.1"))
    knl = lp.split_iname(knl, "i", 128, outer_tag="g.0", inner_tag="l.0")

    from loopy.symbolic import get_dependencies
    assert "i_inner" not in get_dependencies(knl.substitutions["D"].expression)
    knl = lp.precompute(knl, "D", "i_inner")

    # There's only one surviving 'E' rule.
    assert len([
        rule_name
        for rule_name in knl.substitutions
        if rule_name.startswith("E")]) == 1

    # That rule should use the newly created prefetch inames,
    # not the prior 'i_inner'
    assert "i_inner" not in get_dependencies(knl.substitutions["E"].expression)

    lp.auto_test_vs_ref(
            ref_knl, ctx, knl,
            parameters=dict(n=12345))
コード例 #10
0
ファイル: test_transform.py プロジェクト: cmsquared/loopy
def test_vectorize(ctx_factory):
    ctx = ctx_factory()

    knl = lp.make_kernel(
        "{[i]: 0<=i<n}",
        """
        <> temp = 2*b[i]
        a[i] = temp
        """)
    knl = lp.add_and_infer_dtypes(knl, dict(b=np.float32))
    knl = lp.set_array_dim_names(knl, "a,b", "i")
    knl = lp.split_array_dim(knl, [("a", 0), ("b", 0)], 4,
            split_kwargs=dict(slabs=(0, 1)))

    knl = lp.tag_data_axes(knl, "a,b", "c,vec")
    ref_knl = knl
    ref_knl = lp.tag_inames(ref_knl, {"i_inner": "unr"})

    knl = lp.tag_inames(knl, {"i_inner": "vec"})

    knl = lp.preprocess_kernel(knl)
    knl = lp.get_one_scheduled_kernel(knl)
    code, inf = lp.generate_code(knl)

    lp.auto_test_vs_ref(
            ref_knl, ctx, knl,
            parameters=dict(n=30))
コード例 #11
0
ファイル: test_transform.py プロジェクト: cmsquared/loopy
def test_precompute_with_preexisting_inames(ctx_factory):
    ctx = ctx_factory()

    knl = lp.make_kernel(
        "{[e,i,j,k]: 0<=e<E and 0<=i,j,k<n}",
        """
        result[e,i] = sum(j, D1[i,j]*u[e,j])
        result2[e,i] = sum(k, D2[i,k]*u[e,k])
        """)

    knl = lp.add_and_infer_dtypes(knl, {
        "u": np.float32,
        "D1": np.float32,
        "D2": np.float32,
        })

    knl = lp.fix_parameters(knl, n=13)

    ref_knl = knl

    knl = lp.extract_subst(knl, "D1_subst", "D1[ii,jj]", parameters="ii,jj")
    knl = lp.extract_subst(knl, "D2_subst", "D2[ii,jj]", parameters="ii,jj")

    knl = lp.precompute(knl, "D1_subst", "i,j", default_tag="for",
            precompute_inames="ii,jj")
    knl = lp.precompute(knl, "D2_subst", "i,k", default_tag="for",
            precompute_inames="ii,jj")

    knl = lp.set_loop_priority(knl, "ii,jj,e,j,k")

    lp.auto_test_vs_ref(
            ref_knl, ctx, knl,
            parameters=dict(E=200))
コード例 #12
0
ファイル: test_transform.py プロジェクト: cmsquared/loopy
def test_alias_temporaries(ctx_factory):
    ctx = ctx_factory()

    knl = lp.make_kernel(
        "{[i]: 0<=i<n}",
        """
        times2(i) := 2*a[i]
        times3(i) := 3*a[i]
        times4(i) := 4*a[i]

        x[i] = times2(i)
        y[i] = times3(i)
        z[i] = times4(i)
        """)

    knl = lp.add_and_infer_dtypes(knl, {"a": np.float32})

    ref_knl = knl

    knl = lp.split_iname(knl, "i", 16, outer_tag="g.0", inner_tag="l.0")

    knl = lp.precompute(knl, "times2", "i_inner")
    knl = lp.precompute(knl, "times3", "i_inner")
    knl = lp.precompute(knl, "times4", "i_inner")

    knl = lp.alias_temporaries(knl, ["times2_0", "times3_0", "times4_0"])

    lp.auto_test_vs_ref(
            ref_knl, ctx, knl,
            parameters=dict(n=30))
コード例 #13
0
ファイル: test_linalg.py プロジェクト: cmsquared/loopy
def test_transpose(ctx_factory):
    dtype = np.dtype(np.float32)
    ctx = ctx_factory()
    order = "C"

    n = get_suitable_size(ctx)

    knl = lp.make_kernel(
            "{[i,j]: 0<=i,j<%d}" % n,
            [
                "b[i, j] = a[j, i]"
                ],
            [
                lp.GlobalArg("a", dtype, shape=(n, n), order=order),
                lp.GlobalArg("b", dtype, shape=(n, n), order=order),
                ],
            name="transpose")

    seq_knl = knl

    knl = lp.split_iname(knl, "i", 16,
            outer_tag="g.0", inner_tag="l.1")
    knl = lp.split_iname(knl, "j", 16,
            outer_tag="g.1", inner_tag="l.0")
    knl = lp.add_prefetch(knl, 'a', ["i_inner", "j_inner"])

    lp.auto_test_vs_ref(seq_knl, ctx, knl,
            op_count=[dtype.itemsize*n**2*2/1e9], op_label=["GByte"],
            parameters={})
コード例 #14
0
ファイル: test_loopy.py プロジェクト: dokempf/loopy
def test_conditional(ctx_factory):
    #logging.basicConfig(level=logging.DEBUG)
    ctx = ctx_factory()

    knl = lp.make_kernel(
            "{ [i,j]: 0<=i,j<n }",
            """
                <> my_a = a[i,j] {id=read_a}
                <> a_less_than_zero = my_a < 0 {dep=read_a,inames=i:j}
                my_a = 2*my_a {id=twice_a,dep=read_a,if=a_less_than_zero}
                my_a = my_a+1 {id=aplus,dep=twice_a,if=a_less_than_zero}
                out[i,j] = 2*my_a {dep=aplus}
                """,
            [
                lp.GlobalArg("a", np.float32, shape=lp.auto),
                lp.GlobalArg("out", np.float32, shape=lp.auto),
                "..."
                ])

    ref_knl = knl

    lp.auto_test_vs_ref(ref_knl, ctx, knl,
            parameters=dict(
                n=200
                ))
コード例 #15
0
ファイル: test_domain.py プロジェクト: cmsquared/loopy
def test_divisibility_assumption(ctx_factory):
    ctx = ctx_factory()

    knl = lp.make_kernel(
            "[n] -> {[i]: 0<=i<n}",
            [
                "b[i] = 2*a[i]"
                ],
            [
                lp.GlobalArg("a", np.float32, shape=("n",)),
                lp.GlobalArg("b", np.float32, shape=("n",)),
                lp.ValueArg("n", np.int32),
                ],
            assumptions="n>=1 and (exists zz: n = 16*zz)")

    ref_knl = knl

    knl = lp.split_iname(knl, "i", 16)

    knl = lp.preprocess_kernel(knl, ctx.devices[0])
    for k in lp.generate_loop_schedules(knl):
        code = lp.generate_code(k)
        assert "if" not in code

    lp.auto_test_vs_ref(ref_knl, ctx, knl,
            parameters={"n": 16**3})
コード例 #16
0
ファイル: test_apps.py プロジェクト: inducer/loopy
def test_convolution(ctx_factory):
    ctx = ctx_factory()

    dtype = np.float32

    knl = lp.make_kernel(
        "{ [iimg, ifeat, icolor, im_x, im_y, f_x, f_y]: \
                -f_w <= f_x,f_y <= f_w \
                and 0 <= im_x < im_w and 0 <= im_y < im_h \
                and 0<=iimg<=nimgs and 0<=ifeat<nfeats and 0<=icolor<ncolors \
                }",
        """
        out[iimg, ifeat, im_x, im_y] = sum((f_x, f_y, icolor), \
            img[iimg, f_w+im_x-f_x, f_w+im_y-f_y, icolor] \
            * f[ifeat, f_w+f_x, f_w+f_y, icolor])
        """,
        [
            lp.GlobalArg("f", dtype, shape=lp.auto),
            lp.GlobalArg("img", dtype, shape=lp.auto),
            lp.GlobalArg("out", dtype, shape=lp.auto),
            "..."
            ],
        assumptions="f_w>=1 and im_w, im_h >= 2*f_w+1 and nfeats>=1 and nimgs>=0",
        options="annotate_inames")

    f_w = 3

    knl = lp.fix_parameters(knl, f_w=f_w, ncolors=3)

    ref_knl = knl

    def variant_0(knl):
        #knl = lp.split_iname(knl, "im_x", 16, inner_tag="l.0")
        knl = lp.prioritize_loops(knl, "iimg,im_x,im_y,ifeat,f_x,f_y")
        return knl

    def variant_1(knl):
        knl = lp.split_iname(knl, "im_x", 16, inner_tag="l.0")
        knl = lp.prioritize_loops(knl, "iimg,im_x_outer,im_y,ifeat,f_x,f_y")
        return knl

    def variant_2(knl):
        knl = lp.split_iname(knl, "im_x", 16, outer_tag="g.0", inner_tag="l.0")
        knl = lp.split_iname(knl, "im_y", 16, outer_tag="g.1", inner_tag="l.1")
        knl = lp.tag_inames(knl, dict(ifeat="g.2"))
        knl = lp.add_prefetch(knl, "f[ifeat,:,:,:]", default_tag="l.auto")
        knl = lp.add_prefetch(knl, "img", "im_x_inner, im_y_inner, f_x, f_y",
                default_tag="l.auto")
        return knl

    for variant in [
            #variant_0,
            #variant_1,
            variant_2
            ]:
        lp.auto_test_vs_ref(ref_knl, ctx, variant(knl),
                parameters=dict(
                    im_w=128, im_h=128, f_w=f_w,
                    nfeats=3, nimgs=3
                    ))
コード例 #17
0
ファイル: test_domain.py プロジェクト: cmsquared/loopy
def test_equality_constraints(ctx_factory):
    dtype = np.float32
    ctx = ctx_factory()

    order = "C"

    n = 10

    knl = lp.make_kernel([
            "[n] -> {[i,j]: 0<=i,j<n }",
            "{[k]: k =i+5 and k < n}",
            ],
            [
                "a[i,j] = 5 {id=set_all}",
                "b[i,k] = 22 {dep=set_all}",
                ],
            [
                lp.GlobalArg("a,b", dtype, shape="n, n", order=order),
                lp.ValueArg("n", np.int32, approximately=1000),
                ],
            name="equality_constraints", assumptions="n>=1")

    seq_knl = knl

    knl = lp.split_iname(knl, "i", 16, outer_tag="g.0", inner_tag="l.0")
    knl = lp.split_iname(knl, "j", 16, outer_tag="g.1", inner_tag="l.1")
    #print(knl)
    #print(knl.domains[0].detect_equalities())

    lp.auto_test_vs_ref(seq_knl, ctx, knl,
            parameters=dict(n=n), print_ref_code=True)
コード例 #18
0
ファイル: test_reduction.py プロジェクト: cmsquared/loopy
def test_global_parallel_reduction_simpler(ctx_factory, size):
    ctx = ctx_factory()

    pytest.xfail("very sensitive to kernel ordering, fails unused hw-axis check")

    knl = lp.make_kernel(
            "{[l,g,j]: 0 <= l < nl and 0 <= g,j < ng}",
            """
            <> key = make_uint2(l+nl*g, 1234)  {inames=l:g}
            <> ctr = make_uint4(0, 1, 2, 3)  {inames=l:g,id=init_ctr}
            <> vals, ctr = philox4x32_f32(ctr, key)  {dep=init_ctr}

            <> tmp[g] = sum(l, vals.s0 + 1j*vals.s1 + vals.s2 + 1j*vals.s3)

            result = sum(j, tmp[j])
            """)

    ng = 50
    knl = lp.fix_parameters(knl, ng=ng)

    knl = lp.set_options(knl, write_cl=True)

    ref_knl = knl

    knl = lp.split_iname(knl, "l", 128, inner_tag="l.0")
    knl = lp.split_reduction_outward(knl, "l_inner")
    knl = lp.tag_inames(knl, "g:g.0,j:l.0")

    lp.auto_test_vs_ref(ref_knl, ctx, knl, parameters={"nl": size})
コード例 #19
0
ファイル: test_loopy.py プロジェクト: dokempf/loopy
def test_ilp_loop_bound(ctx_factory):
    # The salient bit of this test is that a joint bound on (outer, inner)
    # from a split occurs in a setting where the inner loop has been ilp'ed.
    # In 'normal' parallel loops, the inner index is available for conditionals
    # throughout. In ILP'd loops, not so much.

    ctx = ctx_factory()
    knl = lp.make_kernel(
            "{ [i,j,k]: 0<=i,j,k<n }",
            """
            out[i,k] = sum(j, a[i,j]*b[j,k])
            """,
            [
                lp.GlobalArg("a,b", np.float32, shape=lp.auto),
                "...",
                ],
            assumptions="n>=1")

    ref_knl = knl

    knl = lp.set_loop_priority(knl, "j,i,k")
    knl = lp.split_iname(knl,  "k", 4, inner_tag="ilp")

    lp.auto_test_vs_ref(ref_knl, ctx, knl,
            parameters=dict(
                n=200
                ))
コード例 #20
0
ファイル: test_transform.py プロジェクト: inducer/loopy
def test_to_batched_temp(ctx_factory):
    ctx = ctx_factory()

    knl = lp.make_kernel(
         ''' { [i,j]: 0<=i,j<n } ''',
         ''' cnst = 2.0
         out[i] = sum(j, cnst*a[i,j]*x[j])''',
         [lp.TemporaryVariable(
             "cnst",
             dtype=np.float32,
             shape=(),
             scope=lp.temp_var_scope.PRIVATE), '...'])
    knl = lp.add_and_infer_dtypes(knl, dict(out=np.float32,
                                            x=np.float32,
                                            a=np.float32))
    ref_knl = lp.make_kernel(
         ''' { [i,j]: 0<=i,j<n } ''',
         '''out[i] = sum(j, 2.0*a[i,j]*x[j])''')
    ref_knl = lp.add_and_infer_dtypes(ref_knl, dict(out=np.float32,
                                                    x=np.float32,
                                                    a=np.float32))

    bknl = lp.to_batched(knl, "nbatches", "out,x")
    bref_knl = lp.to_batched(ref_knl, "nbatches", "out,x")

    # checking that cnst is not being bathced
    assert bknl.temporary_variables['cnst'].shape == ()

    a = np.random.randn(5, 5)
    x = np.random.randn(7, 5)

    # Checking that the program compiles and the logic is correct
    lp.auto_test_vs_ref(
            bref_knl, ctx, bknl,
            parameters=dict(a=a, x=x, n=5, nbatches=7))
コード例 #21
0
ファイル: test_fortran.py プロジェクト: cmsquared/loopy
def test_assignment_to_subst_indices(ctx_factory):
    fortran_src = """
        subroutine fill(out, out2, inp, n)
          implicit none

          real*8 a(n), out(n), out2(n), inp(n)
          integer n, i

          do i = 1, n
            a(i) = 6*inp(i)
          enddo

          do i = 1, n
            out(i) = 5*a(i)
          end do
        end
        """

    knl, = lp.parse_fortran(fortran_src)

    knl = lp.fix_parameters(knl, n=5)

    ref_knl = knl

    assert "a" in knl.temporary_variables
    knl = lp.assignment_to_subst(knl, "a")
    assert "a" not in knl.temporary_variables

    ctx = ctx_factory()
    lp.auto_test_vs_ref(ref_knl, ctx, knl)
コード例 #22
0
ファイル: test_fortran.py プロジェクト: cmsquared/loopy
def test_assignment_to_subst_two_defs(ctx_factory):
    fortran_src = """
        subroutine fill(out, out2, inp, n)
          implicit none

          real*8 a, out(n), out2(n), inp(n)
          integer n, i

          do i = 1, n
            a = inp(i)
            out(i) = 5*a
            a = 3*inp(n)
            out2(i) = 6*a
          end do
        end
        """

    knl, = lp.parse_fortran(fortran_src)

    ref_knl = knl

    knl = lp.assignment_to_subst(knl, "a")

    ctx = ctx_factory()
    lp.auto_test_vs_ref(ref_knl, ctx, knl, parameters=dict(n=5))
コード例 #23
0
ファイル: test_fortran.py プロジェクト: cmsquared/loopy
def test_fill(ctx_factory):
    fortran_src = """
        subroutine fill(out, a, n)
          implicit none

          real*8 a, out(n)
          integer n, i

          do i = 1, n
            out(i) = a
          end do
        end

        !$loopy begin
        !
        ! fill, = lp.parse_fortran(SOURCE)
        ! fill = lp.split_iname(fill, "i", split_amount,
        !     outer_tag="g.0", inner_tag="l.0")
        ! RESULT = [fill]
        !
        !$loopy end
        """

    knl, = lp.parse_transformed_fortran(fortran_src,
            pre_transform_code="split_amount = 128")

    assert "i_inner" in knl.all_inames()

    ctx = ctx_factory()

    lp.auto_test_vs_ref(knl, ctx, knl, parameters=dict(n=5, a=5))
コード例 #24
0
ファイル: test_fortran.py プロジェクト: cmsquared/loopy
def test_if(ctx_factory):
    fortran_src = """
        subroutine fill(out, out2, inp, n)
          implicit none

          real*8 a, b, out(n), out2(n), inp(n)
          integer n, i, j

          do i = 1, n
            a = inp(i)
            if (a.ge.3) then
                b = 2*a
                do j = 1,3
                    b = 3 * b
                end do
                out(i) = 5*b
            else
                out(i) = 4*a
            endif
          end do
        end
        """

    knl, = lp.parse_fortran(fortran_src)

    ref_knl = knl

    knl = lp.assignment_to_subst(knl, "a")

    ctx = ctx_factory()
    lp.auto_test_vs_ref(ref_knl, ctx, knl, parameters=dict(n=5))
コード例 #25
0
ファイル: test_loopy.py プロジェクト: dokempf/loopy
def test_kernel_splitting_with_loop(ctx_factory):
    ctx = ctx_factory()

    knl = lp.make_kernel(
            "{ [i,k]: 0<=i<n and 0<=k<3 }",
            """
            c[k,i] = a[k, i + 1]
            out[k,i] = c[k,i]
            """)

    knl = lp.add_and_infer_dtypes(knl,
            {"a": np.float32, "c": np.float32, "out": np.float32, "n": np.int32})

    ref_knl = knl

    knl = lp.split_iname(knl, "i", 128, outer_tag="g.0", inner_tag="l.0")

    # schedule
    from loopy.preprocess import preprocess_kernel
    knl = preprocess_kernel(knl)

    from loopy.schedule import get_one_scheduled_kernel
    knl = get_one_scheduled_kernel(knl)

    # map schedule onto host or device
    print(knl)

    cgr = lp.generate_code_v2(knl)

    assert len(cgr.device_programs) == 2

    print(cgr.device_code())
    print(cgr.host_code())

    lp.auto_test_vs_ref(ref_knl, ctx, knl, parameters=dict(n=5))
コード例 #26
0
ファイル: test_loopy.py プロジェクト: dokempf/loopy
def test_global_temporary(ctx_factory):
    ctx = ctx_factory()

    knl = lp.make_kernel(
            "{ [i]: 0<=i<n}",
            """
            <> c[i] = a[i + 1]
            out[i] = c[i]
            """)

    knl = lp.add_and_infer_dtypes(knl,
            {"a": np.float32, "c": np.float32, "out": np.float32, "n": np.int32})
    knl = lp.set_temporary_scope(knl, "c", "global")

    ref_knl = knl

    knl = lp.split_iname(knl, "i", 128, outer_tag="g.0", inner_tag="l.0")

    cgr = lp.generate_code_v2(knl)

    assert len(cgr.device_programs) == 2

    #print(cgr.device_code())
    #print(cgr.host_code())

    lp.auto_test_vs_ref(ref_knl, ctx, knl, parameters=dict(n=5))
コード例 #27
0
ファイル: test_loopy.py プロジェクト: dokempf/loopy
def test_vector_types(ctx_factory, vec_len):
    ctx = ctx_factory()

    knl = lp.make_kernel(
            "{ [i,j]: 0<=i<n and 0<=j<vec_len }",
            "out[i,j] = 2*a[i,j]",
            [
                lp.GlobalArg("a", np.float32, shape=lp.auto),
                lp.GlobalArg("out", np.float32, shape=lp.auto),
                "..."
                ])

    knl = lp.fix_parameters(knl, vec_len=vec_len)

    ref_knl = knl

    knl = lp.tag_data_axes(knl, "out", "c,vec")
    knl = lp.tag_inames(knl, dict(j="unr"))

    knl = lp.split_iname(knl, "i", 128, outer_tag="g.0", inner_tag="l.0")

    lp.auto_test_vs_ref(ref_knl, ctx, knl,
            parameters=dict(
                n=20000
                ))
コード例 #28
0
ファイル: test_reduction.py プロジェクト: cmsquared/loopy
def test_local_parallel_reduction(ctx_factory, size):
    ctx = ctx_factory()

    knl = lp.make_kernel(
            "{[i, j]: 0 <= i < n and 0 <= j < 5}",
            """
            z[j] = sum(i, i+j)
            """)

    knl = lp.fix_parameters(knl, n=size)

    ref_knl = knl

    def variant0(knl):
        return lp.tag_inames(knl, "i:l.0")

    def variant1(knl):
        return lp.tag_inames(knl, "i:l.0,j:l.1")

    def variant2(knl):
        return lp.tag_inames(knl, "i:l.0,j:g.0")

    for variant in [
            variant0,
            variant1,
            variant2
            ]:
        knl = variant(ref_knl)

        lp.auto_test_vs_ref(ref_knl, ctx, knl)
コード例 #29
0
ファイル: test_domain.py プロジェクト: cmsquared/loopy
def test_domain_dependency_via_existentially_quantified_variable(ctx_factory):
    dtype = np.float32
    ctx = ctx_factory()

    order = "C"

    n = 10

    knl = lp.make_kernel([
            "{[i]: 0<=i<n }",
            "{[k]: k=i and (exists l: k = 2*l) }",
            ],
            [
                "a[i] = 5 {id=set}",
                "b[k] = 6 {dep=set}",
                ],
            [
                lp.GlobalArg("a,b", dtype, shape="n", order=order),
                lp.ValueArg("n", np.int32, approximately=1000),
                ],
            assumptions="n>=1")

    seq_knl = knl

    lp.auto_test_vs_ref(seq_knl, ctx, knl,
            parameters=dict(n=n))
コード例 #30
0
ファイル: test_sem.py プロジェクト: cmsquared/loopy
def test_interp_diff(ctx_factory):
    1/0 # not ready
    dtype = np.float32
    ctx = ctx_factory()
    order = "C"

    N = 8
    M = 8

    from pymbolic import var
    K_sym = var("K")

    field_shape = (N, N, N, K_sym)
    interim_field_shape = (M, M, M, K_sym)

    # 1. direction-by-direction similarity transform on u
    # 2. invert diagonal 
    # 3. transform back (direction-by-direction)

    # K - run-time symbolic
    knl = lp.make_kernel(ctx.devices[0],
            "[K] -> {[i,ip,j,jp,k,kp,e]: 0<=i,j,k<%d AND 0<=ip,jp,kp<%d 0<=e<K}" %M %N
            [
                "[|i,jp,kp] <float32>  u1[i ,jp,kp,e] = sum_float32(ip, I[i,ip]*u [ip,jp,kp,e])",
                "[|i,j ,kp] <float32>  u2[i ,j ,kp,e] = sum_float32(jp, I[j,jp]*u1[i ,jp,kp,e])",
                "[|i,j ,k ] <float32>  u3[i ,j ,k ,e] = sum_float32(kp, I[k,kp]*u2[i ,j ,kp,e])",
                "[|i,j ,k ] <float32>  Pu[i ,j ,k ,e] = P[i,j,k,e]*u3[i,j,k,e]",
                "[|i,j ,kp] <float32> Pu3[i ,j ,kp,e] = sum_float32(k, V[kp,k]*Pu[i ,j , k,e])",
                "[|i,jp,kp] <float32> Pu2[i ,jp,kp,e] = sum_float32(j, V[jp,j]*Pu[i ,j ,kp,e])",
                "Pu[ip,jp,kp,e] = sum_float32(i, V[ip,i]*Pu[i ,jp,kp,e])",
                ],
            [
            lp.GlobalArg("u",   dtype, shape=field_shape, order=order),
            lp.GlobalArg("P",   dtype, shape=interim_field_shape, order=order),
            lp.GlobalArg("I",   dtype, shape=(M, N), order=order),
            lp.GlobalArg("V",   dtype, shape=(N, M), order=order),
            lp.GlobalArg("Pu",  dtype, shape=field_shape, order=order),
            lp.ValueArg("K",  np.int32, approximately=1000),
            ],
            name="sem_lap_precon", assumptions="K>=1")

    print(knl)
    1/0

    knl = lp.split_iname(knl, "e", 16, outer_tag="g.0")#, slabs=(0, 1))

    knl = lp.tag_inames(knl, dict(i="l.0", j="l.1"))

    print(knl)
    #1/0

    kernel_gen = lp.generate_loop_schedules(knl)
    kernel_gen = lp.check_kernels(kernel_gen, dict(K=1000), kill_level_min=5)

    lp.auto_test_vs_ref(seq_knl, ctx, kernel_gen,
            op_count=0,
            op_label="GFlops",
            parameters={"K": K}, print_seq_code=True,)
コード例 #31
0
def test_laplacian(ctx_factory):
    1 / 0  # not adapted to new language

    dtype = np.float32
    ctx = ctx_factory()
    order = "C"

    n = 8

    from pymbolic import var
    K_sym = var("K")

    field_shape = (K_sym, n, n, n)

    # load:     1+6 fields + 1/N D entry
    # store:    1   fields
    # perform:  N*2*6 + 3*5 flops
    # ratio:   (12*N+15)/8  flops per 4 bytes on bus
    #          ~ 14 FLOPS per 4 bytes at N=8
    #          ~ 525 GFLOPS max on a 150GB/s device at N=8 if done perfectly

    # K - run-time symbolic
    knl = lp.make_kernel(
        ctx.devices[0],
        "[K] -> {[i,j,k,e,m,o1,o2,o3,gi]: 0<=i,j,k,m,o1,o2,o3<%d and 0<=e<K and 0<=gi<6}"
        % n,
        [
            "CSE: ur(i,j,k) = sum_float32(o1, D[i,o1]*cse(u[e,o1,j,k], urf))",
            "CSE: us(i,j,k) = sum_float32(o2, D[j,o2]*cse(u[e,i,o2,k], usf))",
            "CSE: ut(i,j,k) = sum_float32(o3, D[k,o3]*cse(u[e,i,j,o3], utf))",

            # define function
            "CSE: Gu(i,j,k) = G[0,e,i,j,k]*ur(i,j,k) + G[1,e,i,j,k]*us(i,j,k) + G[2,e,i,j,k]*ut(i,j,k)",
            "CSE: Gv(i,j,k) = G[1,e,i,j,k]*ur(i,j,k) + G[3,e,i,j,k]*us(i,j,k) + G[4,e,i,j,k]*ut(i,j,k)",
            "CSE: Gw(i,j,k) = G[2,e,i,j,k]*ur(i,j,k) + G[4,e,i,j,k]*us(i,j,k) + G[5,e,i,j,k]*ut(i,j,k)",
            "lap[e,i,j,k]  = "
            "  sum_float32(m, D[m,i]*Gu(m,j,k))"
            "+ sum_float32(m, D[m,j]*Gv(i,m,k))"
            "+ sum_float32(m, D[m,k]*Gw(i,j,m))"
        ],
        [
            lp.ArrayArg("u", dtype, shape=field_shape, order=order),
            lp.ArrayArg("lap", dtype, shape=field_shape, order=order),
            lp.ArrayArg("G", dtype, shape=(6, ) + field_shape, order=order),
            lp.ArrayArg("D", dtype, shape=(n, n), order=order),
            lp.ValueArg("K", np.int32, approximately=1000),
        ],
        name="semlap",
        assumptions="K>=1")

    #print(lp.preprocess_kernel(knl, cse_ok=True))
    #1/0
    #
    #print(knl)
    #1/0
    knl = lp.realize_cse(knl, "urf", np.float32, ["o1"])
    knl = lp.realize_cse(knl, "usf", np.float32, ["o2"])
    knl = lp.realize_cse(knl, "utf", np.float32, ["o3"])

    knl = lp.realize_cse(knl, "Gu", np.float32, ["m", "j", "k"])
    knl = lp.realize_cse(knl, "Gv", np.float32, ["i", "m", "k"])
    knl = lp.realize_cse(knl, "Gw", np.float32, ["i", "j", "m"])

    knl = lp.realize_cse(knl, "ur", np.float32, ["k", "j", "m"])
    knl = lp.realize_cse(knl, "us", np.float32, ["i", "m", "k"])
    knl = lp.realize_cse(knl, "ut", np.float32, ["i", "j", "m"])

    if 0:
        pass
        #seq_knl = lp.add_prefetch(knl, "G", ["gi", "m", "j", "k"], "G[gi,e,m,j,k]", default_tag="l.auto")
        #seq_knl = lp.add_prefetch(seq_knl, "D", ["m", "j"], default_tag="l.auto")
        #seq_knl = lp.add_prefetch(seq_knl, "u", ["i", "j", "k"], "u[*,i,j,k]", default_tag="l.auto")
    else:
        seq_knl = knl

    knl = lp.split_iname(knl, "e", 16, outer_tag="g.0")  #, slabs=(0, 1))

    knl = lp.add_prefetch(knl,
                          "G", ["gi", "m", "j", "k"],
                          "G[gi,e,m,j,k]",
                          default_tag="l.auto")
    knl = lp.add_prefetch(knl, "D", ["m", "j"], default_tag="l.auto")
    #knl = lp.add_prefetch(knl, "u", ["i", "j", "k"], "u[*,i,j,k]", default_tag="l.auto")

    #knl = lp.split_iname(knl, "e_inner", 4, inner_tag="ilp")

    #print(seq_knl)
    #print(lp.preprocess_kernel(knl))
    #1/0

    knl = lp.tag_inames(knl, dict(i="l.0", j="l.1"))

    kernel_gen = lp.generate_loop_schedules(
        knl, loop_priority=["m_fetch_G", "i_fetch_u"])
    kernel_gen = lp.check_kernels(kernel_gen, dict(K=1000))

    K = 1000
    lp.auto_test_vs_ref(
        seq_knl,
        ctx,
        kernel_gen,
        op_count=K *
        (n * n * n * n * 2 * 3 + n * n * n * 5 * 3 + n**4 * 2 * 3) / 1e9,
        op_label="GFlops",
        parameters={"K": K},
        print_seq_code=True)
コード例 #32
0
def test_lbm(ctx_factory):
    ctx = ctx_factory()

    # D2Q4Q4Q4 lattice Boltzmann scheme for the shallow water equations
    # Example by Loic Gouarin <*****@*****.**>
    knl = lp.make_kernel(
        "{[ii,jj]:0<=ii<nx-2 and 0<=jj<ny-2}",
        """  # noqa (silences flake8 line length warning)
        i := ii + 1
        j := jj + 1
        for ii, jj
            with {id_prefix=init_m}
                <> m[0] =   +    f[i-1, j, 0] +    f[i, j-1, 1] + f[i+1, j, 2] +  f[i, j+1, 3]
                m[1] =   + 4.*f[i-1, j, 0] - 4.*f[i+1, j, 2]
                m[2] =   + 4.*f[i, j-1, 1] - 4.*f[i, j+1, 3]
                m[3] =   +    f[i-1, j, 0] -    f[i, j-1, 1] + f[i+1, j, 2] -  f[i, j+1, 3]
                m[4] =   +    f[i-1, j, 4] +    f[i, j-1, 5] + f[i+1, j, 6] +  f[i, j+1, 7]
                m[5] =   + 4.*f[i-1, j, 4] - 4.*f[i+1, j, 6]
                m[6] =   + 4.*f[i, j-1, 5] - 4.*f[i, j+1, 7]
                m[7] =   +    f[i-1, j, 4] -    f[i, j-1, 5] + f[i+1, j, 6] -  f[i, j+1, 7]
                m[8] =   +    f[i-1, j, 8] +    f[i, j-1, 9] + f[i+1, j, 10] + f[i, j+1, 11]
                m[9] =   + 4.*f[i-1, j, 8] - 4.*f[i+1, j, 10]
                m[10] =  + 4.*f[i, j-1, 9] - 4.*f[i, j+1, 11]
                m[11] =  +    f[i-1, j, 8] -    f[i, j-1, 9] + f[i+1, j, 10] - f[i, j+1, 11]
            end

            with {id_prefix=update_m,dep=init_m*}
                m[1] = m[1] + 2.*(m[4] - m[1])
                m[2] = m[2] + 2.*(m[8] - m[2])
                m[3] = m[3]*(1. - 1.5)
                m[5] = m[5] + 1.5*(0.5*(m[0]*m[0]) + (m[4]*m[4])/m[0] - m[5])
                m[6] = m[6] + 1.5*(m[4]*m[8]/m[0] - m[6])
                m[7] = m[7]*(1. - 1.2000000000000000)
                m[9] = m[9] + 1.5*(m[4]*m[8]/m[0] - m[9])
                m[10] = m[10] + 1.5*(0.5*(m[0]*m[0]) + (m[8]*m[8])/m[0] - m[10])
                m[11] = m[11]*(1. - 1.2)
            end

            with {dep=update_m*}
                f_new[i, j, 0] =  + 0.25*m[0] + 0.125*m[1] + 0.25*m[3]
                f_new[i, j, 1] =  + 0.25*m[0] + 0.125*m[2] - 0.25*m[3]
                f_new[i, j, 2] =  + 0.25*m[0] - 0.125*m[1] + 0.25*m[3]
                f_new[i, j, 3] =  + 0.25*m[0] - 0.125*m[2] - 0.25*m[3]
                f_new[i, j, 4] =  + 0.25*m[4] + 0.125*m[5] + 0.25*m[7]
                f_new[i, j, 5] =  + 0.25*m[4] + 0.125*m[6] - 0.25*m[7]
                f_new[i, j, 6] =  + 0.25*m[4] - 0.125*m[5] + 0.25*m[7]
                f_new[i, j, 7] =  + 0.25*m[4] - 0.125*m[6] - 0.25*m[7]
                f_new[i, j, 8] =  + 0.25*m[8] + 0.125*m[9] + 0.25*m[11]
                f_new[i, j, 9] =  + 0.25*m[8] + 0.125*m[10] - 0.25*m[11]
                f_new[i, j, 10] =  + 0.25*m[8] - 0.125*m[9] + 0.25*m[11]
                f_new[i, j, 11] =  + 0.25*m[8] - 0.125*m[10] - 0.25*m[11]
           end
        end
        """)

    knl = lp.add_and_infer_dtypes(knl, {"f": np.float32})

    ref_knl = knl

    knl = lp.split_iname(knl, "ii", 16, outer_tag="g.1", inner_tag="l.1")
    knl = lp.split_iname(knl, "jj", 16, outer_tag="g.0", inner_tag="l.0")
    knl = lp.expand_subst(knl)
    knl = lp.add_prefetch(knl, "f", "ii_inner,jj_inner", fetch_bounding_box=True,
            default_tag="l.auto")

    lp.auto_test_vs_ref(ref_knl, ctx, knl, parameters={"nx": 20, "ny": 20})
コード例 #33
0
def test_advect(ctx_factory):
    1 / 0  # not ready

    dtype = np.float32
    ctx = ctx_factory()

    order = "C"

    N = 8

    from pymbolic import var
    K_sym = var("K")

    field_shape = (K_sym, N, N, N)

    # 1. direction-by-direction similarity transform on u
    # 2. invert diagonal
    # 3. transform back (direction-by-direction)

    # K - run-time symbolic

    # A. updated for CSE: notation.
    # B. fixed temp indexing and C ordering
    # load:     3+9 fields + 1/N D entry
    # store:    3   fields
    # perform:  N*2*6 + 3*5 + 3*5 flops
    # ratio:   (12*N+30)/15  flops per 4 bytes on bus
    #          ~ 8.4 FLOPS per 4 bytes at N=8
    #          ~ 300 GFLOPS max on a 150GB/s device at N=8 if done perfectly
    knl = lp.make_kernel(
        ctx.devices[0],
        "[K] -> {[i,j,k,m,e]: 0<=i,j,k,m<%d AND 0<=e<K}" % N,
        [
            # differentiate u
            "CSE:  ur(i,j,k) = sum_float32(@m, D[i,m]*u[e,m,j,k])",
            "CSE:  us(i,j,k) = sum_float32(@m, D[j,m]*u[e,i,m,k])",
            "CSE:  ut(i,j,k) = sum_float32(@m, D[k,m]*u[e,i,j,m])",

            # differentiate v
            "CSE:  vr(i,j,k) = sum_float32(@m, D[i,m]*v[e,m,j,k])",
            "CSE:  vs(i,j,k) = sum_float32(@m, D[j,m]*v[e,i,m,k])",
            "CSE:  vt(i,j,k) = sum_float32(@m, D[k,m]*v[e,i,j,m])",

            # differentiate w
            "CSE:  wr(i,j,k) = sum_float32(@m, D[i,m]*w[e,m,j,k])",
            "CSE:  ws(i,j,k) = sum_float32(@m, D[j,m]*w[e,i,m,k])",
            "CSE:  wt(i,j,k) = sum_float32(@m, D[k,m]*w[e,i,j,m])",

            # find velocity in (r,s,t) coordinates
            # CSE?
            "CSE: Vr(i,j,k) = G[0,e,i,j,k]*u[e,i,j,k] + G[1,e,i,j,k]*v[e,i,j,k] + G[2,e,i,j,k]*w[e,i,j,k]",
            "CSE: Vs(i,j,k) = G[3,e,i,j,k]*u[e,i,j,k] + G[4,e,i,j,k]*v[e,i,j,k] + G[5,e,i,j,k]*w[e,i,j,k]",
            "CSE: Vt(i,j,k) = G[6,e,i,j,k]*u[e,i,j,k] + G[7,e,i,j,k]*v[e,i,j,k] + G[8,e,i,j,k]*w[e,i,j,k]",

            # form nonlinear term on integration nodes
            "Nu[e,i,j,k] = Vr(i,j,k)*ur(i,j,k)+Vs(i,j,k)*us(i,j,k)+Vt(i,j,k)*ut(i,j,k)",
            "Nv[e,i,j,k] = Vr(i,j,k)*vr(i,j,k)+Vs(i,j,k)*vs(i,j,k)+Vt(i,j,k)*vt(i,j,k)",
            "Nw[e,i,j,k] = Vr(i,j,k)*wr(i,j,k)+Vs(i,j,k)*ws(i,j,k)+Vt(i,j,k)*wt(i,j,k)",
        ],
        [
            lp.ArrayArg("u", dtype, shape=field_shape, order=order),
            lp.ArrayArg("v", dtype, shape=field_shape, order=order),
            lp.ArrayArg("w", dtype, shape=field_shape, order=order),
            lp.ArrayArg("Nu", dtype, shape=field_shape, order=order),
            lp.ArrayArg("Nv", dtype, shape=field_shape, order=order),
            lp.ArrayArg("Nw", dtype, shape=field_shape, order=order),
            lp.ArrayArg("G", dtype, shape=(9, ) + field_shape, order=order),
            lp.ArrayArg("D", dtype, shape=(N, N), order=order),
            lp.ValueArg("K", np.int32, approximately=1000),
        ],
        name="sem_advect",
        assumptions="K>=1")

    print(knl)
    1 / 0

    seq_knl = knl

    knl = lp.split_iname(knl, "e", 16, outer_tag="g.0")  #, slabs=(0, 1))

    knl = lp.tag_inames(knl, dict(i="l.0", j="l.1"))

    kernel_gen = lp.generate_loop_schedules(knl)
    kernel_gen = lp.check_kernels(kernel_gen, dict(K=1000), kill_level_min=5)

    K = 1000
    lp.auto_test_vs_ref(
        seq_knl,
        ctx,
        kernel_gen,
        op_count=0,
        op_label="GFlops",
        parameters={"K": K},
        print_seq_code=True,
    )
コード例 #34
0
def test_laplacian_lmem(ctx_factory):
    dtype = np.float32
    ctx = ctx_factory()
    order = "C"

    n = 4

    from pymbolic import var
    K_sym = var("K")

    field_shape = (K_sym, n, n, n)

    # K - run-time symbolic
    knl = lp.make_kernel(
        ctx.devices[0],
        "[K] -> {[i,j,k,e,m,o,gi]: 0<=i,j,k,m,o<%d and 0<=e<K and 0<=gi<6}" %
        n, [
            "ur(a,b,c) := sum_float32(@o, D[a,o]*u[e,o,b,c])",
            "us(a,b,c) := sum_float32(@o, D[b,o]*u[e,a,o,c])",
            "ut(a,b,c) := sum_float32(@o, D[c,o]*u[e,a,b,o])",
            "lap[e,i,j,k]  = "
            "  sum_float32(m, D[m,i]*(G[0,e,m,j,k]*ur(m,j,k) + G[1,e,m,j,k]*us(m,j,k) + G[2,e,m,j,k]*ut(m,j,k)))"
            "+ sum_float32(m, D[m,j]*(G[1,e,i,m,k]*ur(i,m,k) + G[3,e,i,m,k]*us(i,m,k) + G[4,e,i,m,k]*ut(i,m,k)))"
            "+ sum_float32(m, D[m,k]*(G[2,e,i,j,m]*ur(i,j,m) + G[4,e,i,j,m]*us(i,j,m) + G[5,e,i,j,m]*ut(i,j,m)))"
        ], [
            lp.ArrayArg("u", dtype, shape=field_shape, order=order),
            lp.ArrayArg("lap", dtype, shape=field_shape, order=order),
            lp.ArrayArg("G", dtype, shape=(6, ) + field_shape, order=order),
            lp.ArrayArg("D", dtype, shape=(n, n), order=order),
            lp.ValueArg("K", np.int32, approximately=1000),
        ],
        name="semlap",
        assumptions="K>=1")

    seq_knl = knl

    if 1:
        # original
        knl = lp.add_prefetch(knl,
                              "u", ["i", "j", "k", "o"],
                              default_tag="l.auto")
        knl = lp.precompute(knl,
                            "ur",
                            np.float32, ["a", "b", "c"],
                            default_tag="l.auto")
        knl = lp.precompute(knl,
                            "us",
                            np.float32, ["a", "b", "c"],
                            default_tag="l.auto")
        knl = lp.precompute(knl,
                            "ut",
                            np.float32, ["a", "b", "c"],
                            default_tag="l.auto")
        knl = lp.split_iname(knl, "e", 16, outer_tag="g.0")  #, slabs=(0, 1))
        knl = lp.add_prefetch(knl,
                              "D", ["m", "j", "k", "i"],
                              default_tag="l.auto")
    else:
        # experiment
        #        knl = lp.add_prefetch(knl, "u", ["i", "j", "k", "o"], default_tag="l.auto")
        knl = lp.precompute(knl,
                            "eu",
                            np.float32, ["b", "c"],
                            default_tag="l.auto")
        knl = lp.precompute(knl,
                            "ur",
                            np.float32, ["b", "c"],
                            default_tag="l.auto")
        knl = lp.precompute(knl,
                            "us",
                            np.float32, ["b", "c"],
                            default_tag="l.auto")
        knl = lp.precompute(knl,
                            "ut",
                            np.float32, ["b", "c"],
                            default_tag="l.auto")
        knl = lp.split_iname(knl, "e", 1, outer_tag="g.0")  #, slabs=(0, 1))
        knl = lp.add_prefetch(knl,
                              "D", ["m", "j", "k", "i"],
                              default_tag="l.auto")

    #knl = lp.add_prefetch(knl, "G", [2,3,4], default_tag="l.auto") # axis/argument indices on G
    #knl = lp.add_prefetch(knl, "G", ["i", "j", "m", "k"], default_tag="l.auto") # axis/argument indices on G
    #print(knl)
    #1/0

    #knl = lp.split_iname(knl, "e_inner", 4, inner_tag="ilp")
#    knl = lp.join_dimensions(knl, ["i", "j"], "i_and_j")

#print(seq_knl)
#print(lp.preprocess_kernel(knl))
#1/0

# TW: turned this off since it generated:
# ValueError: cannot tag 'i_and_j'--not known
#    knl = lp.tag_inames(knl, dict(i_and_j="l.0", k="l.1"))

    kernel_gen = lp.generate_loop_schedules(knl)
    kernel_gen = lp.check_kernels(kernel_gen, dict(K=1000))

    K = 1000
    lp.auto_test_vs_ref(
        seq_knl,
        ctx,
        kernel_gen,
        op_count=K *
        (n * n * n * n * 2 * 3 + n * n * n * 5 * 3 + n**4 * 2 * 3) / 1e9,
        op_label="GFlops",
        parameters={"K": K})
コード例 #35
0
def test_advect_dealias(ctx_factory):
    1 / 0  # not ready

    dtype = np.float32
    ctx = ctx_factory()
    order = "C"

    N = 8
    M = 8

    from pymbolic import var
    K_sym = var("K")

    field_shape = (N, N, N, K_sym)
    interim_field_shape = (M, M, M, K_sym)

    # 1. direction-by-direction similarity transform on u
    # 2. invert diagonal
    # 3. transform back (direction-by-direction)

    # K - run-time symbolic
    knl = lp.make_kernel(
        ctx.devices[0],
        "[K] -> {[i,ip,j,jp,k,kp,m,e]: 0<=i,j,k,m<%d AND 0<=o,ip,jp,kp<%d 0<=e<K}"
        % M % N[

            # interpolate u to integration nodes
            "CSE:  u0[i,jp,kp,e] = sum_float32(@o, I[i,o]*u[o,jp,kp,e])",
            "CSE:  u1[i,j,kp,e]  = sum_float32(@o, I[j,o]*u0[i,o,kp,e])",
            "CSE:  Iu[i,j,k,e]   = sum_float32(@o, I[k,o]*u1[i,j,o,e])",

            # differentiate u on integration nodes
            "CSE:  Iur[i,j,k,e]  = sum_float32(@m, D[i,m]*Iu[m,j,k,e])",
            "CSE:  Ius[i,j,k,e]  = sum_float32(@m, D[j,m]*Iu[i,m,k,e])",
            "CSE:  Iut[i,j,k,e]  = sum_float32(@m, D[k,m]*Iu[i,j,m,e])",

            # interpolate v to integration nodes
            "CSE:  v0[i,jp,kp,e] = sum_float32(@o, I[i,o]*v[o,jp,kp,e])",
            "CSE:  v1[i,j,kp,e]  = sum_float32(@o, I[j,o]*v0[i,o,kp,e])",
            "CSE:  Iv[i,j,k,e]   = sum_float32(@o, I[k,o]*v1[i,j,o,e])",

            # differentiate v on integration nodes
            "CSE:  Ivr[i,j,k,e]  = sum_float32(@m, D[i,m]*Iv[m,j,k,e])",
            "CSE:  Ivs[i,j,k,e]  = sum_float32(@m, D[j,m]*Iv[i,m,k,e])",
            "CSE:  Ivt[i,j,k,e]  = sum_float32(@m, D[k,m]*Iv[i,j,m,e])",

            # interpolate w to integration nodes
            "CSE:  w0[i,jp,kp,e] = sum_float32(@o, I[i,o]*w[o,jp,kp,e])",
            "CSE:  w1[i,j,kp,e]  = sum_float32(@o, I[j,o]*w0[i,o,kp,e])",
            "CSE:  Iw[i,j,k,e]   = sum_float32(@o, I[k,o]*w1[i,j,o,e])",

            # differentiate v on integration nodes
            "CSE:  Iwr[i,j,k,e]  = sum_float32(@m, D[i,m]*Iw[m,j,k,e])",
            "CSE:  Iws[i,j,k,e]  = sum_float32(@m, D[j,m]*Iw[i,m,k,e])",
            "CSE:  Iwt[i,j,k,e]  = sum_float32(@m, D[k,m]*Iw[i,j,m,e])",

            # find velocity in (r,s,t) coordinates
            # QUESTION: should I use CSE here ?
            "CSE: Vr[i,j,k,e] = G[i,j,k,0,e]*Iu[i,j,k,e] + G[i,j,k,1,e]*Iv[i,j,k,e] + G[i,j,k,2,e]*Iw[i,j,k,e]",
            "CSE: Vs[i,j,k,e] = G[i,j,k,3,e]*Iu[i,j,k,e] + G[i,j,k,4,e]*Iv[i,j,k,e] + G[i,j,k,5,e]*Iw[i,j,k,e]",
            "CSE: Vt[i,j,k,e] = G[i,j,k,6,e]*Iu[i,j,k,e] + G[i,j,k,7,e]*Iv[i,j,k,e] + G[i,j,k,8,e]*Iw[i,j,k,e]",

            # form nonlinear term on integration nodes
            # QUESTION: should I use CSE here ?
            "<SE: Nu[i,j,k,e] = Vr[i,j,k,e]*Iur[i,j,k,e]+Vs[i,j,k,e]*Ius[i,j,k,e]+Vt[i,j,k,e]*Iut[i,j,k,e]",
            "<SE: Nv[i,j,k,e] = Vr[i,j,k,e]*Ivr[i,j,k,e]+Vs[i,j,k,e]*Ivs[i,j,k,e]+Vt[i,j,k,e]*Ivt[i,j,k,e]",
            "<SE: Nw[i,j,k,e] = Vr[i,j,k,e]*Iwr[i,j,k,e]+Vs[i,j,k,e]*Iws[i,j,k,e]+Vt[i,j,k,e]*Iwt[i,j,k,e]",

            # L2 project Nu back to Lagrange basis
            "CSE: Nu2[ip,j,k,e]   = sum_float32(@m, V[ip,m]*Nu[m,j,k,e])",
            "CSE: Nu1[ip,jp,k,e]  = sum_float32(@m, V[jp,m]*Nu2[ip,m,k,e])",
            "INu[ip,jp,kp,e] = sum_float32(@m, V[kp,m]*Nu1[ip,jp,m,e])",

            # L2 project Nv back to Lagrange basis
            "CSE: Nv2[ip,j,k,e]   = sum_float32(@m, V[ip,m]*Nv[m,j,k,e])",
            "CSE: Nv1[ip,jp,k,e]  = sum_float32(@m, V[jp,m]*Nv2[ip,m,k,e])",
            "INv[ip,jp,kp,e] = sum_float32(@m, V[kp,m]*Nv1[ip,jp,m,e])",

            # L2 project Nw back to Lagrange basis
            "CSE: Nw2[ip,j,k,e]   = sum_float32(@m, V[ip,m]*Nw[m,j,k,e])",
            "CSE: Nw1[ip,jp,k,e]  = sum_float32(@m, V[jp,m]*Nw2[ip,m,k,e])",
            "INw[ip,jp,kp,e] = sum_float32(@m, V[kp,m]*Nw1[ip,jp,m,e])", ],
        [
            lp.ArrayArg("u", dtype, shape=field_shape, order=order),
            lp.ArrayArg("v", dtype, shape=field_shape, order=order),
            lp.ArrayArg("w", dtype, shape=field_shape, order=order),
            lp.ArrayArg("INu", dtype, shape=field_shape, order=order),
            lp.ArrayArg("INv", dtype, shape=field_shape, order=order),
            lp.ArrayArg("INw", dtype, shape=field_shape, order=order),
            lp.ArrayArg("D", dtype, shape=(M, M), order=order),
            lp.ArrayArg("I", dtype, shape=(M, N), order=order),
            lp.ArrayArg("V", dtype, shape=(N, M), order=order),
            lp.ValueArg("K", np.int32, approximately=1000),
        ],
        name="sem_advect",
        assumptions="K>=1")

    print(knl)
    1 / 0

    knl = lp.split_iname(knl, "e", 16, outer_tag="g.0")  #, slabs=(0, 1))

    knl = lp.tag_inames(knl, dict(i="l.0", j="l.1"))

    print(knl)
    #1/0

    kernel_gen = lp.generate_loop_schedules(knl)
    kernel_gen = lp.check_kernels(kernel_gen, dict(K=1000), kill_level_min=5)

    K = 1000
    lp.auto_test_vs_ref(
        seq_knl,
        ctx,
        kernel_gen,
        op_count=0,
        op_label="GFlops",
        parameters={"K": K},
        print_seq_code=True,
    )
コード例 #36
0
def test_interp_diff(ctx_factory):
    1 / 0  # not ready
    dtype = np.float32
    ctx = ctx_factory()
    order = "C"

    N = 8
    M = 8

    from pymbolic import var
    K_sym = var("K")

    field_shape = (N, N, N, K_sym)
    interim_field_shape = (M, M, M, K_sym)

    # 1. direction-by-direction similarity transform on u
    # 2. invert diagonal
    # 3. transform back (direction-by-direction)

    # K - run-time symbolic
    knl = lp.make_kernel(
        ctx.devices[0],
        "[K] -> {[i,ip,j,jp,k,kp,e]: 0<=i,j,k<%d AND 0<=ip,jp,kp<%d 0<=e<K}" %
        M %
        N["[|i,jp,kp] <float32>  u1[i ,jp,kp,e] = sum_float32(ip, I[i,ip]*u [ip,jp,kp,e])",
          "[|i,j ,kp] <float32>  u2[i ,j ,kp,e] = sum_float32(jp, I[j,jp]*u1[i ,jp,kp,e])",
          "[|i,j ,k ] <float32>  u3[i ,j ,k ,e] = sum_float32(kp, I[k,kp]*u2[i ,j ,kp,e])",
          "[|i,j ,k ] <float32>  Pu[i ,j ,k ,e] = P[i,j,k,e]*u3[i,j,k,e]",
          "[|i,j ,kp] <float32> Pu3[i ,j ,kp,e] = sum_float32(k, V[kp,k]*Pu[i ,j , k,e])",
          "[|i,jp,kp] <float32> Pu2[i ,jp,kp,e] = sum_float32(j, V[jp,j]*Pu[i ,j ,kp,e])",
          "Pu[ip,jp,kp,e] = sum_float32(i, V[ip,i]*Pu[i ,jp,kp,e])", ], [
              lp.ArrayArg("u", dtype, shape=field_shape, order=order),
              lp.ArrayArg("P", dtype, shape=interim_field_shape, order=order),
              lp.ArrayArg("I", dtype, shape=(M, N), order=order),
              lp.ArrayArg("V", dtype, shape=(N, M), order=order),
              lp.ArrayArg("Pu", dtype, shape=field_shape, order=order),
              lp.ValueArg("K", np.int32, approximately=1000),
          ],
        name="sem_lap_precon",
        assumptions="K>=1")

    print(knl)
    1 / 0

    knl = lp.split_iname(knl, "e", 16, outer_tag="g.0")  #, slabs=(0, 1))

    knl = lp.tag_inames(knl, dict(i="l.0", j="l.1"))

    print(knl)
    #1/0

    kernel_gen = lp.generate_loop_schedules(knl)
    kernel_gen = lp.check_kernels(kernel_gen, dict(K=1000), kill_level_min=5)

    lp.auto_test_vs_ref(
        seq_knl,
        ctx,
        kernel_gen,
        op_count=0,
        op_label="GFlops",
        parameters={"K": K},
        print_seq_code=True,
    )
コード例 #37
0
def test_rank_one(ctx_factory):
    dtype = np.float32
    ctx = ctx_factory()
    order = "F"

    #n = int(get_suitable_size(ctx)**(2.7/2))
    n = 16**3

    knl = lp.make_kernel(
        "[n] -> {[i,j]: 0<=i,j<n}",
        ["c[i, j] = a[i]*b[j] {id=mylabel, priority =5}"], [
            lp.GlobalArg("a", dtype, shape=("n", ), order=order),
            lp.GlobalArg("b", dtype, shape=("n", ), order=order),
            lp.GlobalArg("c", dtype, shape=("n, n"), order=order),
            lp.ValueArg("n", np.int32, approximately=n),
        ],
        name="rank_one",
        assumptions="n >= 16")

    def variant_1(knl):
        knl = lp.add_prefetch(knl, "a")
        knl = lp.add_prefetch(knl, "b")
        knl = lp.set_loop_priority(knl, ["i", "j"])
        return knl

    def variant_2(knl):
        knl = lp.split_iname(knl, "i", 16, outer_tag="g.0", inner_tag="l.0")
        knl = lp.split_iname(knl, "j", 16, outer_tag="g.1", inner_tag="l.1")

        knl = lp.add_prefetch(knl, "a")
        knl = lp.add_prefetch(knl, "b")
        return knl

    def variant_3(knl):
        knl = lp.split_iname(knl, "i", 16, outer_tag="g.0", inner_tag="l.0")
        knl = lp.split_iname(knl, "j", 16, outer_tag="g.1", inner_tag="l.1")

        knl = lp.add_prefetch(knl, "a", ["i_inner"])
        knl = lp.add_prefetch(knl, "b", ["j_inner"])
        return knl

    def variant_4(knl):
        knl = lp.split_iname(knl, "i", 256, outer_tag="g.0", slabs=(0, 1))
        knl = lp.split_iname(knl, "j", 256, outer_tag="g.1", slabs=(0, 1))

        knl = lp.add_prefetch(knl, "a", ["i_inner"], default_tag=None)
        knl = lp.add_prefetch(knl, "b", ["j_inner"], default_tag=None)

        knl = lp.split_iname(knl, "i_inner", 16, inner_tag="l.0")
        knl = lp.split_iname(knl, "j_inner", 16, inner_tag="l.1")

        knl = lp.split_iname(knl,
                             "a_dim_0",
                             16,
                             outer_tag="l.1",
                             inner_tag="l.0")
        knl = lp.split_iname(knl,
                             "b_dim_0",
                             16,
                             outer_tag="l.1",
                             inner_tag="l.0")
        return knl

    seq_knl = knl

    for variant in [variant_1, variant_2, variant_3, variant_4]:
        lp.auto_test_vs_ref(seq_knl,
                            ctx,
                            variant(knl),
                            op_count=[np.dtype(dtype).itemsize * n**2 / 1e9],
                            op_label=["GBytes"],
                            parameters={"n": n})
コード例 #38
0
def test_axpy(ctx_factory):
    logging.basicConfig(level="INFO")
    ctx = ctx_factory()

    n = 3145182

    vec = cl_array.vec

    if ctx.devices[0].platform.vendor.startswith("Advanced Micro"):
        pytest.skip("crashes on AMD 15.12")

    for dtype, check, a, b in [
        (np.complex64, None, 5, 7),
        (vec.float4, check_float4, vec.make_float4(1, 2, 3, 4),
         vec.make_float4(6, 7, 8, 9)),
        (np.float32, None, 5, 7),
    ]:
        knl = lp.make_kernel("[n] -> {[i]: 0<=i<n}", ["z[i] = a*x[i]+b*y[i]"],
                             [
                                 lp.ValueArg("a", dtype),
                                 lp.GlobalArg("x", dtype, shape="n,"),
                                 lp.ValueArg("b", dtype),
                                 lp.GlobalArg("y", dtype, shape="n,"),
                                 lp.GlobalArg("z", dtype, shape="n,"),
                                 lp.ValueArg("n", np.int32, approximately=n),
                             ],
                             name="axpy",
                             assumptions="n>=1")

        seq_knl = knl

        def variant_cpu(knl):
            unroll = 16
            block_size = unroll * 4096
            knl = lp.split_iname(knl,
                                 "i",
                                 block_size,
                                 outer_tag="g.0",
                                 slabs=(0, 1))
            knl = lp.split_iname(knl, "i_inner", unroll, inner_tag="unr")
            return knl

        def variant_gpu(knl):
            unroll = 4
            block_size = 256
            knl = lp.split_iname(knl,
                                 "i",
                                 unroll * block_size,
                                 outer_tag="g.0",
                                 slabs=(0, 1))
            knl = lp.split_iname(knl,
                                 "i_inner",
                                 block_size,
                                 outer_tag="unr",
                                 inner_tag="l.0")
            return knl

        #for variant in [ variant_gpu]:
        for variant in [variant_cpu, variant_gpu]:
            lp.auto_test_vs_ref(
                seq_knl,
                ctx,
                variant(knl),
                op_count=[np.dtype(dtype).itemsize * n * 3 / 1e9],
                op_label=["GBytes"],
                parameters={
                    "a": a,
                    "b": b,
                    "n": n
                },
                check_result=check,
                blacklist_ref_vendors=["Advanced Micro"])
コード例 #39
0
def test_convolution(ctx_factory):
    ctx = ctx_factory()

    dtype = np.float32

    knl = lp.make_kernel(
        "{ [iimg, ifeat, icolor, im_x, im_y, f_x, f_y]: \
                -f_w <= f_x,f_y <= f_w \
                and 0 <= im_x < im_w and 0 <= im_y < im_h \
                and 0<=iimg<=nimgs and 0<=ifeat<nfeats and 0<=icolor<ncolors \
                }",
        """
        out[iimg, ifeat, im_x, im_y] = sum((f_x, f_y, icolor), \
            img[iimg, f_w+im_x-f_x, f_w+im_y-f_y, icolor] \
            * f[ifeat, f_w+f_x, f_w+f_y, icolor])
        """,
        [
            lp.GlobalArg("f", dtype, shape=lp.auto),
            lp.GlobalArg("img", dtype, shape=lp.auto),
            lp.GlobalArg("out", dtype, shape=lp.auto),
            "..."
            ],
        assumptions="f_w>=1 and im_w, im_h >= 2*f_w+1 and nfeats>=1 and nimgs>=0",
        options="annotate_inames")

    f_w = 3

    knl = lp.fix_parameters(knl, f_w=f_w, ncolors=3)

    ref_knl = knl

    def variant_0(knl):
        #knl = lp.split_iname(knl, "im_x", 16, inner_tag="l.0")
        knl = lp.prioritize_loops(knl, "iimg,im_x,im_y,ifeat,f_x,f_y")
        return knl

    def variant_1(knl):
        knl = lp.split_iname(knl, "im_x", 16, inner_tag="l.0")
        knl = lp.prioritize_loops(knl, "iimg,im_x_outer,im_y,ifeat,f_x,f_y")
        return knl

    def variant_2(knl):
        knl = lp.split_iname(knl, "im_x", 16, outer_tag="g.0", inner_tag="l.0")
        knl = lp.split_iname(knl, "im_y", 16, outer_tag="g.1", inner_tag="l.1")
        knl = lp.tag_inames(knl, dict(ifeat="g.2"))
        knl = lp.add_prefetch(knl, "f[ifeat,:,:,:]",
                fetch_outer_inames="im_x_outer, im_y_outer, ifeat",
                default_tag="l.auto")
        knl = lp.add_prefetch(knl, "img", "im_x_inner, im_y_inner, f_x, f_y",
                fetch_outer_inames="iimg, im_x_outer, im_y_outer, ifeat, icolor",
                default_tag="l.auto")
        return knl

    for variant in [
            #variant_0,
            #variant_1,
            variant_2
            ]:
        lp.auto_test_vs_ref(ref_knl, ctx, variant(knl),
                parameters=dict(
                    im_w=128, im_h=128, f_w=f_w,
                    nfeats=3, nimgs=3
                    ))
コード例 #40
0
def test_tim2d(ctx_factory):
    dtype = np.float32
    ctx = ctx_factory()
    order = "C"

    n = 8

    from pymbolic import var
    K_sym = var("K")  # noqa

    field_shape = (K_sym, n, n)

    # K - run-time symbolic
    knl = lp.make_kernel(
        "{[i,j,e,m,o,o2,gi]: 0<=i,j,m,o,o2<n and 0<=e<K and 0<=gi<3}",
        [
            "ur(a,b) := simul_reduce(sum, o, D[a,o]*u[e,o,b])",
            "us(a,b) := simul_reduce(sum, o2, D[b,o2]*u[e,a,o2])",

            #"Gu(mat_entry,a,b) := G[mat_entry,e,m,j]*ur(m,j)",
            "Gux(a,b) := G$x[0,e,a,b]*ur(a,b)+G$x[1,e,a,b]*us(a,b)",
            "Guy(a,b) := G$y[1,e,a,b]*ur(a,b)+G$y[2,e,a,b]*us(a,b)",
            "lap[e,i,j]  = "
            "  simul_reduce(sum, m, D[m,i]*Gux(m,j))"
            "+ simul_reduce(sum, m, D[m,j]*Guy(i,m))"
        ],
        [
            lp.GlobalArg("u", dtype, shape=field_shape, order=order),
            lp.GlobalArg("lap", dtype, shape=field_shape, order=order),
            lp.GlobalArg("G", dtype, shape=(3, ) + field_shape, order=order),
            # lp.ConstantArrayArg("D", dtype, shape=(n, n), order=order),
            lp.GlobalArg("D", dtype, shape=(n, n), order=order),
            # lp.ImageArg("D", dtype, shape=(n, n)),
            lp.ValueArg("K", np.int32, approximately=1000),
        ],
        name="semlap2D",
        assumptions="K>=1")

    knl = lp.fix_parameters(knl, n=n)
    knl = lp.duplicate_inames(knl, "o", within="id:ur")
    knl = lp.duplicate_inames(knl, "o", within="id:us")

    seq_knl = knl

    def variant_orig(knl):
        knl = lp.tag_inames(knl, dict(i="l.0", j="l.1", e="g.0"))

        knl = lp.add_prefetch(knl, "D[:,:]", default_tag="l.auto")
        knl = lp.add_prefetch(knl, "u[e, :, :]", default_tag="l.auto")

        knl = lp.precompute(knl, "ur(m,j)", ["m", "j"], default_tag="l.auto")
        knl = lp.precompute(knl, "us(i,m)", ["i", "m"], default_tag="l.auto")

        knl = lp.precompute(knl, "Gux(m,j)", ["m", "j"], default_tag="l.auto")
        knl = lp.precompute(knl, "Guy(i,m)", ["i", "m"], default_tag="l.auto")

        knl = lp.add_prefetch(knl, "G$x[:,e,:,:]", default_tag="l.auto")
        knl = lp.add_prefetch(knl, "G$y[:,e,:,:]", default_tag="l.auto")

        knl = lp.tag_inames(knl, dict(o="unr"))
        knl = lp.tag_inames(knl, dict(m="unr"))

        knl = lp.set_instruction_priority(knl, "id:D_fetch", 5)
        print(knl)

        return knl

    for variant in [variant_orig]:
        K = 1000  # noqa
        lp.auto_test_vs_ref(
            seq_knl,
            ctx,
            variant(knl),
            op_count=[
                K * (n * n * n * 2 * 2 + n * n * 2 * 3 + n**3 * 2 * 2) / 1e9
            ],
            op_label=["GFlops"],
            parameters={"K": K})
コード例 #41
0
def test_dg_volume(ctx_factory):
    #logging.basicConfig(level=logging.DEBUG)

    dtype = np.float32
    dtype4 = cl.array.vec.float4
    ctx = ctx_factory()

    order = "F"

    N = 3  # noqa
    Np = (N + 1) * (N + 2) * (N + 3) // 6  # noqa

    K = 10000  # noqa

    knl = lp.make_kernel(
        [
            "{[n,m,k]: 0<= n,m < Np and 0<= k < K}",
        ],
        """
                <> du_drst = simul_reduce(sum, m, DrDsDt[n,m]*u[k,m])
                <> dv_drst = simul_reduce(sum, m, DrDsDt[n,m]*v[k,m])
                <> dw_drst = simul_reduce(sum, m, DrDsDt[n,m]*w[k,m])
                <> dp_drst = simul_reduce(sum, m, DrDsDt[n,m]*p[k,m])

                # volume flux
                rhsu[k,n] = dot(drst_dx[k],dp_drst)
                rhsv[k,n] = dot(drst_dy[k],dp_drst)
                rhsw[k,n] = dot(drst_dz[k],dp_drst)
                rhsp[k,n] = dot(drst_dx[k], du_drst) + dot(drst_dy[k], dv_drst) \
                    + dot(drst_dz[k], dw_drst)
                """, [
            lp.GlobalArg(
                "u,v,w,p,rhsu,rhsv,rhsw,rhsp", dtype, shape="K, Np",
                order="C"),
            lp.GlobalArg("DrDsDt", dtype4, shape="Np, Np", order="C"),
            lp.GlobalArg(
                "drst_dx,drst_dy,drst_dz", dtype4, shape="K", order=order),
            lp.ValueArg("K", np.int32, approximately=1000),
        ],
        name="dg_volume",
        assumptions="K>=1")

    knl = lp.fix_parameters(knl, Np=Np)

    seq_knl = knl

    def variant_basic(knl):
        knl = lp.tag_inames(knl, dict(k="g.0", n="l.0"))
        return knl

    def variant_more_per_work_group(knl):
        knl = lp.tag_inames(knl, dict(n="l.0"))
        knl = lp.split_iname(knl, "k", 3, outer_tag="g.0", inner_tag="l.1")
        return knl

    def variant_image_d(knl):
        knl = lp.tag_inames(knl, dict(n="l.0"))
        knl = lp.split_iname(knl, "k", 3, outer_tag="g.0", inner_tag="l.1")
        knl = lp.change_arg_to_image(knl, "DrDsDt")
        return knl

    def variant_prefetch_d(knl):
        knl = lp.tag_inames(knl, dict(n="l.0"))
        knl = lp.split_iname(knl, "k", 3, outer_tag="g.0", inner_tag="l.1")
        knl = lp.add_prefetch(knl,
                              "DrDsDt[:,:]",
                              fetch_outer_inames="k_outer",
                              default_tag="l.auto")
        return knl

    def variant_prefetch_fields(knl):
        knl = lp.tag_inames(knl, dict(n="l.0"))
        knl = lp.split_iname(knl, "k", 3, outer_tag="g.0", inner_tag="l.1")
        for name in ["u", "v", "w", "p"]:
            knl = lp.add_prefetch(knl,
                                  "%s[k,:]" % name, ["k_inner"],
                                  default_tag="l.auto")

        return knl

    def variant_k_ilp(knl):
        knl = lp.tag_inames(knl, dict(n="l.0"))

        knl = lp.split_iname(knl, "k", 3, outer_tag="g.0", inner_tag="ilp")
        knl = lp.tag_inames(knl, dict(m="unr"))
        return knl

    def variant_simple_padding(knl):
        knl = lp.tag_inames(knl, dict(n="l.0"))

        knl = lp.split_iname(knl, "k", 3, outer_tag="g.0", inner_tag="l.1")

        arg_names = [
            prefix + name for name in ["u", "v", "w", "p"]
            for prefix in ["", "rhs"]
        ]

        for name in arg_names:
            knl = lp.add_padding(knl, name, axis=0, align_bytes=32)

        knl = lp.tag_inames(knl, dict(m="unr"))

        return knl

    def variant_fancy_padding(knl):
        knl = lp.tag_inames(knl, dict(n="l.0"))

        pad_mult = lp.find_padding_multiple(knl, "u", 1, 32)

        arg_names = [
            prefix + name for name in ["u", "v", "w", "p"]
            for prefix in ["", "rhs"]
        ]

        knl = lp.split_array_dim(knl, [(nm, 0) for nm in arg_names], pad_mult)

        return knl

    parameters_dict = dict(K=K)

    variants = [
        variant_basic, variant_more_per_work_group, variant_prefetch_d,
        variant_prefetch_fields, variant_k_ilp, variant_simple_padding,
        variant_fancy_padding
    ]

    if (ctx.devices[0].image_support
            and ctx.devices[0].platform.name != "Portable Computing Language"):
        variants.append(variant_image_d)

    for variant in variants:
        lp.auto_test_vs_ref(
            seq_knl,
            ctx,
            variant(knl),
            parameters=parameters_dict,
            #codegen_kwargs=dict(with_annotation=True)
        )
コード例 #42
0
def test_tim3d(ctx_factory):
    dtype = np.float32
    ctx = ctx_factory()
    order = "C"

    n = 8

    from pymbolic import var
    K_sym = var("K")

    field_shape = (K_sym, n, n, n)

    # K - run-time symbolic
    knl = lp.make_kernel(
        ctx.devices[0],
        "[K] -> {[i,j,k,e,m,o,gi]: 0<=i,j,k,m,o<%d and 0<=e<K and 0<=gi<6}" %
        n,
        [
            "ur(a,b,c) := sum_float32(@o, D[a,o]*u[e,o,b,c])",
            "us(a,b,c) := sum_float32(@o, D[b,o]*u[e,a,o,c])",
            "ut(a,b,c) := sum_float32(@o, D[c,o]*u[e,a,b,o])",
            "lap[e,i,j,k]  = "
            "   sum_float32(m, D[m,i]*(G[0,e,m,j,k]*ur(m,j,k) + G[1,e,m,j,k]*us(m,j,k) + G[2,e,m,j,k]*ut(m,j,k)))"
            " + sum_float32(m, D[m,j]*(G[1,e,i,m,k]*ur(i,m,k) + G[3,e,i,m,k]*us(i,m,k) + G[4,e,i,m,k]*ut(i,m,k)))"
            " + sum_float32(m, D[m,k]*(G[2,e,i,j,m]*ur(i,j,m) + G[4,e,i,j,m]*us(i,j,m) + G[5,e,i,j,m]*ut(i,j,m)))"
        ],
        [
            lp.ArrayArg("u", dtype, shape=field_shape, order=order),
            lp.ArrayArg("lap", dtype, shape=field_shape, order=order),
            lp.ArrayArg("G", dtype, shape=(6, ) + field_shape, order=order),
            #            lp.ConstantArrayArg("D", dtype, shape=(n, n), order=order),
            lp.ArrayArg("D", dtype, shape=(n, n), order=order),
            #            lp.ImageArg("D", dtype, shape=(n, n)),
            lp.ValueArg("K", np.int32, approximately=1000),
        ],
        name="semlap3D",
        assumptions="K>=1")

    seq_knl = knl
    knl = lp.add_prefetch(knl,
                          "D", ["m", "j", "i", "k", "o"],
                          default_tag="l.auto")
    knl = lp.add_prefetch(knl, "u", ["i", "j", "o", "k"], default_tag="l.auto")
    knl = lp.precompute(knl,
                        "ur",
                        np.float32, ["a", "b", "c"],
                        default_tag="l.auto")
    knl = lp.precompute(knl,
                        "us",
                        np.float32, ["a", "b", "c"],
                        default_tag="l.auto")
    knl = lp.precompute(knl,
                        "ut",
                        np.float32, ["a", "b", "c"],
                        default_tag="l.auto")
    knl = lp.split_iname(knl, "e", 1, outer_tag="g.0")  #, slabs=(0, 1))
    knl = lp.split_iname(knl, "k", n, inner_tag="l.2")  #, slabs=(0, 1))
    knl = lp.split_iname(knl, "j", n, inner_tag="l.1")  #, slabs=(0, 1))
    knl = lp.split_iname(knl, "i", n, inner_tag="l.0")  #, slabs=(0, 1))

    #    knl = lp.tag_inames(knl, dict(k_nner="unr"))

    knl = lp.tag_inames(knl, dict(o="unr"))
    knl = lp.tag_inames(knl, dict(m="unr"))
    #    knl = lp.tag_inames(knl, dict(i="unr"))

    knl = lp.add_prefetch(knl, "G", [2, 3, 4],
                          default_tag="l.auto")  # axis/argument indices on G

    kernel_gen = lp.generate_loop_schedules(knl)
    kernel_gen = lp.check_kernels(kernel_gen, dict(K=1000))

    K = 4000
    lp.auto_test_vs_ref(seq_knl,
                        ctx,
                        kernel_gen,
                        op_count=K * ((n**4) * 3 * 2 + (n**3) * 5 * 3 +
                                      (n**4) * 3 * 2) / 1e9,
                        op_label="GFlops",
                        parameters={"K": K})
コード例 #43
0
def test_red2d(ctx_factory):
    dtype = np.float32
    ctx = ctx_factory()
    order = "C"

    n = 16

    from pymbolic import var
    K_sym = var("K")

    field_shape = (K_sym, n, n)

    # K - run-time symbolic
    knl = lp.make_kernel(
        ctx.devices[0],
        "[K] -> {[i,j,e,m,o,gi]: 0<=i,j,m,o<%d and 0<=e<K and 0<=gi<3}" % n, [
            "ue(a,b) := u[e,a,b]",
            "ur(a,b) := sum_float32(@o, D[a,o]*ue(o,b))",
            "us(a,b) := sum_float32(@o, D[b,o]*ue(a,o))", "lap[e,i,j]  = "
            "  sum_float32(m, D[m,i]*(G[0,e,m,j]*ur(m,j)+G[1,e,m,j]*us(m,j)))"
            "+ sum_float32(m, D[m,j]*(G[1,e,i,m]*ur(i,m)+G[2,e,i,m]*us(i,m)))"
        ], [
            lp.ArrayArg("u", dtype, shape=field_shape, order=order),
            lp.ArrayArg("lap", dtype, shape=field_shape, order=order),
            lp.ArrayArg("G", dtype, shape=(3, ) + field_shape, order=order),
            lp.ArrayArg("D", dtype, shape=(n, n), order=order),
            lp.ValueArg("K", np.int32, approximately=1000),
        ],
        name="semlap2D",
        assumptions="K>=1")

    unroll = 32

    seq_knl = knl
    knl = lp.add_prefetch(knl, "D", ["m", "j", "i", "o"], default_tag="l.auto")
    knl = lp.add_prefetch(knl, "u", ["i", "j", "o"], default_tag="l.auto")
    knl = lp.precompute(knl,
                        "ue",
                        np.float32, ["a", "b", "m"],
                        default_tag="l.auto")
    knl = lp.precompute(knl,
                        "ur",
                        np.float32, ["a", "b"],
                        default_tag="l.auto")
    knl = lp.precompute(knl,
                        "us",
                        np.float32, ["a", "b"],
                        default_tag="l.auto")
    knl = lp.split_iname(knl, "e", 2, outer_tag="g.0")
    knl = lp.split_iname(knl, "j", n, inner_tag="l.0")  #, slabs=(0, 1))
    knl = lp.split_iname(knl, "i", n, inner_tag="l.1")  #, slabs=(0, 1))

    knl = lp.tag_inames(knl, dict(o="unr"))
    knl = lp.tag_inames(knl, dict(m="unr"))

    knl = lp.add_prefetch(knl, "G", [2, 3],
                          default_tag="l.auto")  # axis/argument indices on G

    kernel_gen = lp.generate_loop_schedules(knl)
    kernel_gen = lp.check_kernels(kernel_gen, dict(K=1000))

    K = 1000
    lp.auto_test_vs_ref(seq_knl,
                        ctx,
                        kernel_gen,
                        op_count=K * ((n**3) * 2 * 2 + n * n * 2 * 3 +
                                      (n**3) * 2 * 2) / 1e9,
                        op_label="GFlops",
                        parameters={"K": K})
コード例 #44
0
ファイル: test_numa_diff.py プロジェクト: shwina/loopy
def test_gnuma_horiz_kernel(ctx_factory, ilp_multiple, Nq, opt_level):  # noqa
    ctx = ctx_factory()

    filename = os.path.join(os.path.dirname(__file__),
                            "strongVolumeKernels.f90")
    with open(filename, "r") as sourcef:
        source = sourcef.read()

    source = source.replace("datafloat", "real*4")

    hsv_r, hsv_s = [
        knl
        for knl in lp.parse_fortran(source, filename, seq_dependencies=False)
        if "KernelR" in knl.name or "KernelS" in knl.name
    ]
    hsv_r = lp.tag_instructions(hsv_r, "rknl")
    hsv_s = lp.tag_instructions(hsv_s, "sknl")
    hsv = lp.fuse_kernels([hsv_r, hsv_s], ["_r", "_s"])
    #hsv = hsv_s
    hsv = lp.add_nosync(hsv, "any", "writes:rhsQ", "writes:rhsQ", force=True)

    from gnuma_loopy_transforms import (fix_euler_parameters,
                                        set_q_storage_format,
                                        set_D_storage_format)

    hsv = lp.fix_parameters(hsv, Nq=Nq)
    hsv = lp.prioritize_loops(hsv, "e,k,j,i")
    hsv = lp.tag_inames(hsv, dict(e="g.0", j="l.1", i="l.0"))
    hsv = lp.assume(hsv, "elements >= 1")

    hsv = fix_euler_parameters(hsv, p_p0=1, p_Gamma=1.4, p_R=1)
    for name in ["Q", "rhsQ"]:
        hsv = set_q_storage_format(hsv, name)

    hsv = set_D_storage_format(hsv)
    #hsv = lp.add_prefetch(hsv, "volumeGeometricFactors")

    ref_hsv = hsv

    if opt_level == 0:
        tap_hsv = hsv

    hsv = lp.add_prefetch(hsv, "D[:,:]", default_tag="l.auto")

    if opt_level == 1:
        tap_hsv = hsv

    # turn the first reads into subst rules
    local_prep_var_names = set()
    for insn in lp.find_instructions(hsv, "tag:local_prep"):
        assignee, = insn.assignee_var_names()
        local_prep_var_names.add(assignee)
        hsv = lp.assignment_to_subst(hsv, assignee)

    # precompute fluxes
    hsv = lp.assignment_to_subst(hsv, "JinvD_r")
    hsv = lp.assignment_to_subst(hsv, "JinvD_s")

    r_fluxes = lp.find_instructions(hsv, "tag:compute_fluxes and tag:rknl")
    s_fluxes = lp.find_instructions(hsv, "tag:compute_fluxes and tag:sknl")

    if ilp_multiple > 1:
        hsv = lp.split_iname(hsv, "k", 2, inner_tag="ilp")
        ilp_inames = ("k_inner", )
        flux_ilp_inames = ("kk", )
    else:
        ilp_inames = ()
        flux_ilp_inames = ()

    rtmps = []
    stmps = []

    flux_store_idx = 0

    for rflux_insn, sflux_insn in zip(r_fluxes, s_fluxes):
        for knl_tag, insn, flux_inames, tmps, flux_precomp_inames in [
            ("rknl", rflux_insn, (
                "j",
                "n",
            ), rtmps, (
                "jj",
                "ii",
            )),
            ("sknl", sflux_insn, (
                "i",
                "n",
            ), stmps, (
                "ii",
                "jj",
            )),
        ]:
            flux_var, = insn.assignee_var_names()
            print(insn)

            reader, = lp.find_instructions(
                hsv,
                "tag:{knl_tag} and reads:{flux_var}".format(knl_tag=knl_tag,
                                                            flux_var=flux_var))

            hsv = lp.assignment_to_subst(hsv, flux_var)

            flux_store_name = "flux_store_%d" % flux_store_idx
            flux_store_idx += 1
            tmps.append(flux_store_name)

            hsv = lp.precompute(hsv,
                                flux_var + "_subst",
                                flux_inames + ilp_inames,
                                temporary_name=flux_store_name,
                                precompute_inames=flux_precomp_inames +
                                flux_ilp_inames,
                                default_tag=None)
            if flux_var.endswith("_s"):
                hsv = lp.tag_array_axes(hsv, flux_store_name, "N0,N1,N2?")
            else:
                hsv = lp.tag_array_axes(hsv, flux_store_name, "N1,N0,N2?")

            n_iname = "n_" + flux_var.replace("_r", "").replace("_s", "")
            if n_iname.endswith("_0"):
                n_iname = n_iname[:-2]
            hsv = lp.rename_iname(hsv,
                                  "n",
                                  n_iname,
                                  within="id:" + reader.id,
                                  existing_ok=True)

    hsv = lp.tag_inames(hsv, dict(ii="l.0", jj="l.1"))
    for iname in flux_ilp_inames:
        hsv = lp.tag_inames(hsv, {iname: "ilp"})

    hsv = lp.alias_temporaries(hsv, rtmps)
    hsv = lp.alias_temporaries(hsv, stmps)

    if opt_level == 2:
        tap_hsv = hsv

    for prep_var_name in local_prep_var_names:
        if prep_var_name.startswith("Jinv") or "_s" in prep_var_name:
            continue
        hsv = lp.precompute(hsv,
                            lp.find_one_rule_matching(
                                hsv, prep_var_name + "_*subst*"),
                            default_tag="l.auto")

    if opt_level == 3:
        tap_hsv = hsv

    hsv = lp.add_prefetch(hsv,
                          "Q[ii,jj,k,:,:,e]",
                          sweep_inames=ilp_inames,
                          default_tag="l.auto")

    if opt_level == 4:
        tap_hsv = hsv
        tap_hsv = lp.tag_inames(
            tap_hsv, dict(Q_dim_field_inner="unr", Q_dim_field_outer="unr"))

    hsv = lp.buffer_array(hsv,
                          "rhsQ",
                          ilp_inames,
                          fetch_bounding_box=True,
                          default_tag="for",
                          init_expression="0",
                          store_expression="base + buffer")

    if opt_level == 5:
        tap_hsv = hsv
        tap_hsv = lp.tag_inames(
            tap_hsv,
            dict(rhsQ_init_field_inner="unr",
                 rhsQ_store_field_inner="unr",
                 rhsQ_init_field_outer="unr",
                 rhsQ_store_field_outer="unr",
                 Q_dim_field_inner="unr",
                 Q_dim_field_outer="unr"))

    # buffer axes need to be vectorized in order for this to work
    hsv = lp.tag_array_axes(hsv, "rhsQ_buf", "c?,vec,c")
    hsv = lp.tag_array_axes(hsv, "Q_fetch", "c?,vec,c")
    hsv = lp.tag_array_axes(hsv, "D_fetch", "f,f")
    hsv = lp.tag_inames(hsv, {
        "Q_dim_k": "unr",
        "rhsQ_init_k": "unr",
        "rhsQ_store_k": "unr"
    },
                        ignore_nonexistent=True)

    if opt_level == 6:
        tap_hsv = hsv
        tap_hsv = lp.tag_inames(
            tap_hsv,
            dict(rhsQ_init_field_inner="unr",
                 rhsQ_store_field_inner="unr",
                 rhsQ_init_field_outer="unr",
                 rhsQ_store_field_outer="unr",
                 Q_dim_field_inner="unr",
                 Q_dim_field_outer="unr"))

    hsv = lp.tag_inames(
        hsv,
        dict(rhsQ_init_field_inner="vec",
             rhsQ_store_field_inner="vec",
             rhsQ_init_field_outer="unr",
             rhsQ_store_field_outer="unr",
             Q_dim_field_inner="vec",
             Q_dim_field_outer="unr"))

    if opt_level == 7:
        tap_hsv = hsv

    hsv = lp.collect_common_factors_on_increment(
        hsv, "rhsQ_buf", vary_by_axes=(0, ) if ilp_multiple > 1 else ())

    if opt_level >= 8:
        tap_hsv = hsv

    hsv = tap_hsv

    if 1:
        print("OPS")
        op_map = lp.get_op_map(hsv)
        print(lp.stringify_stats_mapping(op_map))

        print("MEM")
        gmem_map = lp.get_mem_access_map(hsv, subgroup_size=32).to_bytes()
        print(lp.stringify_stats_mapping(gmem_map))

    hsv = lp.set_options(hsv,
                         cl_build_options=[
                             "-cl-denorms-are-zero",
                             "-cl-fast-relaxed-math",
                             "-cl-finite-math-only",
                             "-cl-mad-enable",
                             "-cl-no-signed-zeros",
                         ])

    hsv = hsv.copy(name="horizontalStrongVolumeKernel")

    results = lp.auto_test_vs_ref(ref_hsv,
                                  ctx,
                                  hsv,
                                  parameters=dict(elements=300),
                                  quiet=True)

    elapsed = results["elapsed_wall"]

    print("elapsed", elapsed)
コード例 #45
0
ファイル: find-centers.py プロジェクト: yueyedeai/loopy
                        and qbx_forced_limit == 0)
                    or (in_disk
                            and qbx_forced_limit != 0
                            and qbx_forced_limit * center_side[ictr] > 0)
                    )

            <> post_dist_sq = if(matches, dist_sq, HUGE)
        end
        <> min_dist_sq, <> min_ictr = argmin(ictr, ictr, post_dist_sq)

        tgt_to_qbx_center[itgt] = if(min_dist_sq < HUGE, min_ictr, -1)
    end
    """)

knl = lp.fix_parameters(knl, ambient_dim=2)
knl = lp.add_and_infer_dtypes(
    knl, {
        "tgt,center,radius,HUGE": np.float32,
        "center_side,qbx_forced_limit": np.int32,
    })

lp.auto_test_vs_ref(knl,
                    cl_ctx,
                    knl,
                    parameters={
                        "HUGE": 1e20,
                        "ncenters": 200,
                        "ntargets": 300,
                        "qbx_forced_limit": 1
                    })
コード例 #46
0
def test_matmul(ctx_factory, buffer_inames):
    ctx = ctx_factory()

    if (buffer_inames
            and ctx.devices[0].platform.name == "Portable Computing Language"):
        pytest.skip("crashes on pocl")

    logging.basicConfig(level=logging.INFO)

    fortran_src = """
        subroutine dgemm(m,n,ell,a,b,c)
          implicit none
          real*8 a(m,ell),b(ell,n),c(m,n)
          integer m,n,k,i,j,ell

          do j = 1,n
            do i = 1,m
              do k = 1,ell
                c(i,j) = c(i,j) + b(k,j)*a(i,k)
              end do
            end do
          end do
        end subroutine
        """

    prog = lp.parse_fortran(fortran_src)

    assert len(prog["dgemm"].domains) == 1

    ref_prog = prog

    prog = lp.split_iname(prog, "i", 16, outer_tag="g.0", inner_tag="l.1")
    prog = lp.split_iname(prog, "j", 8, outer_tag="g.1", inner_tag="l.0")
    prog = lp.split_iname(prog, "k", 32)
    prog = lp.assume(prog, "n mod 32 = 0")
    prog = lp.assume(prog, "m mod 32 = 0")
    prog = lp.assume(prog, "ell mod 16 = 0")

    prog = lp.extract_subst(prog, "a_acc", "a[i1,i2]", parameters="i1, i2")
    prog = lp.extract_subst(prog, "b_acc", "b[i1,i2]", parameters="i1, i2")
    prog = lp.precompute(prog,
                         "a_acc",
                         "k_inner,i_inner",
                         precompute_outer_inames="i_outer, j_outer, k_outer",
                         default_tag="l.auto")
    prog = lp.precompute(prog,
                         "b_acc",
                         "j_inner,k_inner",
                         precompute_outer_inames="i_outer, j_outer, k_outer",
                         default_tag="l.auto")

    prog = lp.buffer_array(prog,
                           "c",
                           buffer_inames=buffer_inames,
                           init_expression="0",
                           store_expression="base+buffer")

    lp.auto_test_vs_ref(ref_prog,
                        ctx,
                        prog,
                        parameters=dict(n=128, m=128, ell=128))
コード例 #47
0
ファイル: test_fem_assembly.py プロジェクト: tj-sun/loopy
def test_laplacian_stiffness(ctx_factory):
    dtype = np.float32
    ctx = ctx_factory()
    order = "C"

    dim = 2 # (baked into code)

    Nq = 40 # num. quadrature points (baked into code)
    Nb = 20 # num. basis functions (baked into code)
    Nc = 100 # num. cells (run-time symbolic)

    from pymbolic import var
    Nc_sym = var("Nc")

    knl = lp.make_kernel(ctx.devices[0],
            "[Nc] -> {[K,i,j,q, dx_axis, ax_b]: 0<=K<Nc and 0<=i,j<%(Nb)d and 0<=q<%(Nq)d "
            "and 0<= dx_axis, ax_b < %(dim)d}"
            % dict(Nb=Nb, Nq=Nq, dim=dim),
            [
                "dPsi(ij, dxi) := sum_float32(@ax_b,"
                    "  jacInv[ax_b,dxi,K,q] * DPsi[ax_b,ij,q])",
                "A[K, i, j] = sum_float32(q, w[q] * jacDet[K,q] * ("
                    "sum_float32(dx_axis, dPsi$one(i,dx_axis)*dPsi$two(j,dx_axis))))"
                ],
            [
            lp.GlobalArg("jacInv", dtype, shape=(dim, dim, Nc_sym, Nq), order=order),
            lp.ConstantArg("DPsi", dtype, shape=(dim, Nb, Nq), order=order),
            lp.GlobalArg("jacDet", dtype, shape=(Nc_sym, Nq), order=order),
            lp.ConstantArg("w", dtype, shape=(Nq,), order=order),
            lp.GlobalArg("A", dtype, shape=(Nc_sym, Nb, Nb), order=order),
            lp.ValueArg("Nc",  np.int32, approximately=1000),
            ],
            name="lapquad", assumptions="Nc>=1")

    knl = lp.tag_inames(knl, dict(ax_b="unr"))
    seq_knl = knl

    def variant_fig31(knl):
        # This (mostly) reproduces Figure 3.1.

        knl = lp.tag_inames(knl, {"dx_axis": "unr"})
        return knl, ["K", "i", "j", "q", "ax_b_insn"]

    def variant_pg4(knl):
        # This (mostly) reproduces the unlabeled code snippet on pg. 4.

        knl = lp.tag_inames(knl, {"dx_axis": "unr"})
        Ncloc = 16
        knl = lp.split_iname(knl, "K", Ncloc,
                outer_iname="Ko", inner_iname="Kloc")
        return knl, ["Ko", "Kloc", "i", "j", "q", "ax_b_insn"]

    def variant_fig32(knl):
        # This (mostly) reproduces Figure 3.2.

        Ncloc = 16
        knl = lp.split_iname(knl, "K", Ncloc,
                outer_iname="Ko", inner_iname="Kloc")
        knl = lp.precompute(knl, "dPsi", np.float32, ["i", "q", "dx_axis"],
                default_tag=None)
        knl = lp.tag_inames(knl, {"dx_axis": "unr", "dxi": "unr"})
        return knl, ["Ko", "Kloc", "dPsi_q", "ij", "i", "j", "q", "ax_b_insn"]

    def variant_fig33(knl):
        # This is meant to (mostly) reproduce Figure 3.3.

        Ncloc = 16
        knl = lp.split_iname(knl, "K", Ncloc,
                outer_iname="Ko", inner_iname="Kloc")
        knl = lp.precompute(knl, "dPsi$one", np.float32, ["dx_axis"], default_tag=None)
        knl = lp.tag_inames(knl, {"j": "ilp.seq"})

        return knl, ["Ko", "Kloc"]

    def variant_simple_gpu(knl):
        # This is a simple GPU-ish variant.

        # It's not the same thing as Matt's code, but I'll need some more time
        # to reverse-engineer what is going on there. Some discussion might
        # help, too. :)

        knl = lp.tag_inames(knl, {"dx_axis": "unr"})
        Ncloc = 16
        knl = lp.split_iname(knl, "K", Ncloc,
                outer_iname="Ko", inner_iname="Kloc",
                outer_tag="g.0")
        knl = lp.tag_inames(knl, {"i": "l.1", "j": "l.0"})
        return knl, ["K", "i", "j", "q", "ax_b_insn"]

    def variant_simple_gpu_prefetch(knl):
        # This adds prefetching to the GPU variant above.

        # In this variant (on my machine), loopy makes a silly choice
        # for the upper bound of Kloc (it uses Nc). I'll investigate and
        # fix that. (FIXME)

        knl = lp.tag_inames(knl, {"dx_axis": "unr"})
        Ncloc = 16
        knl = lp.split_iname(knl, "K", Ncloc,
                outer_iname="Ko", inner_iname="Kloc",
                outer_tag="g.0")
        knl = lp.tag_inames(knl, {"i": "l.1", "j": "l.0"})
        knl = lp.add_prefetch(knl, "w", ["q"])
        knl = lp.add_prefetch(knl, "DPsi", [0, 1, 2])
        knl = lp.add_prefetch(knl, "jacInv", [0, 1, 3])
        knl = lp.add_prefetch(knl, "jacDet", [1])
        return knl, ["K", "i", "j", "q", "ax_b_insn"]

    # Plug in variant name here
    #                        |
    #                        v
    for variant in [variant_fig33]:
        var_knl, loop_prio = variant(knl)
        kernel_gen = lp.generate_loop_schedules(var_knl,
                loop_priority=loop_prio)
        kernel_gen = lp.check_kernels(kernel_gen, dict(Nc=Nc))

        #print lp.preprocess_kernel(var_knl)

        lp.auto_test_vs_ref(seq_knl, ctx, kernel_gen,
                op_count=0, op_label="GFlops",
                parameters={"Nc": Nc}, print_ref_code=True)
コード例 #48
0
ファイル: test_dg.py プロジェクト: shwina/loopy
def no_test_dg_surface(ctx_factory):
    # tough to test, would need the right index info
    dtype = np.float32
    ctx = ctx_factory()

    order = "F"

    N = 3  # noqa
    Np = (N + 1) * (N + 2) * (N + 3) // 6  # noqa
    Nfp = (N + 1) * (N + 2) // 2  # noqa
    Nfaces = 4  # noqa

    K = 10000  # noqa

    knl = lp.make_kernel(
        ["{[m,n,k]: 0<= m < NfpNfaces and 0<= n < Np and 0<= k < K }"],
        """
                <> idP = vmapP[m,k]
                <> idM = vmapM[m,k]

                <> du = u[[idP]]-u[[idM]]
                <> dv = v[[idP]]-v[[idM]]
                <> dw = w[[idP]]-w[[idM]]
                <> dp = bc[m,k]*p[[idP]] - p[[idM]]

                <> dQ = 0.5*Fscale[m,k]* \
                        (dp - nx[m,k]*du - ny[m,k]*dv - nz[m,k]*dw)

                <> fluxu = -nx[m,k]*dQ
                <> fluxv = -ny[m,k]*dQ
                <> fluxw = -nz[m,k]*dQ
                <> fluxp =          dQ

                # reduction here
                rhsu[n,k] = sum(m, LIFT[n,m]*fluxu)
                rhsv[n,k] = sum(m, LIFT[n,m]*fluxv)
                rhsw[n,k] = sum(m, LIFT[n,m]*fluxw)
                rhsp[n,k] = sum(m, LIFT[n,m]*fluxp)
                """, [
            lp.GlobalArg(
                "vmapP,vmapM", np.int32, shape="NfpNfaces, K", order=order),
            lp.GlobalArg("u,v,w,p,rhsu,rhsv,rhsw,rhsp",
                         dtype,
                         shape="Np, K",
                         order=order),
            lp.GlobalArg(
                "nx,ny,nz,Fscale,bc", dtype, shape="NfpNfaces, K",
                order=order),
            lp.GlobalArg("LIFT", dtype, shape="Np, NfpNfaces", order="C"),
            lp.ValueArg("K", np.int32, approximately=1000),
        ],
        name="dg_surface",
        assumptions="K>=1")

    knl = lp.fix_parameters(knl,
                            Np=Np,
                            Nfp=Nfp,
                            NfpNfaces=Nfaces * Nfp,
                            nsurf_dofs=K * Nfp)

    seq_knl = knl

    def variant_basic(knl):
        return knl

    parameters_dict = dict(K=K)

    for variant in [
            variant_basic,
    ]:

        lp.auto_test_vs_ref(seq_knl,
                            ctx,
                            variant(knl),
                            parameters=parameters_dict)
コード例 #49
0
def test_poisson_fem(ctx_factory):
    # Stolen from Peter Coogan and Rob Kirby for FEM assembly
    ctx = ctx_factory()

    nbf = 5
    nqp = 5
    sdim = 3

    knl = lp.make_kernel("{ [c,i,j,k,ell,ell2]: \
            0 <= c < nels and \
            0 <= i < nbf and \
            0 <= j < nbf and \
            0 <= k < nqp and \
            0 <= ell,ell2 < sdim}",
                         """
            dpsi(bf,k0,dir) := \
                    simul_reduce(sum, ell2, DFinv[c,ell2,dir] * DPsi[bf,k0,ell2] )
            Ael[c,i,j] = \
                    J[c] * w[k] * sum(ell, dpsi(i,k,ell) * dpsi(j,k,ell))
            """,
                         assumptions="nels>=1 and nbf >= 1 and nels mod 4 = 0")

    print(knl)

    knl = lp.fix_parameters(knl, nbf=nbf, sdim=sdim, nqp=nqp)

    ref_knl = knl

    knl = lp.prioritize_loops(knl, ["c", "j", "i", "k"])

    def variant_1(knl):
        knl = lp.precompute(knl, "dpsi", "i,k,ell", default_tag='for')
        knl = lp.prioritize_loops(knl, "c,i,j")
        return knl

    def variant_2(knl):
        knl = lp.precompute(knl, "dpsi", "i,ell", default_tag='for')
        knl = lp.prioritize_loops(knl, "c,i,j")
        return knl

    def add_types(knl):
        return lp.add_and_infer_dtypes(
            knl,
            dict(
                w=np.float32,
                J=np.float32,
                DPsi=np.float32,
                DFinv=np.float32,
            ))

    for variant in [
            #variant_1,
            variant_2
    ]:
        knl = variant(knl)

        lp.auto_test_vs_ref(add_types(ref_knl),
                            ctx,
                            add_types(knl),
                            parameters=dict(n=5, nels=15, nbf=5, sdim=2,
                                            nqp=7))