コード例 #1
0
def test(rank, args, shared_model, dtype):
    test_ctr = 0
    torch.manual_seed(args.seed + rank)

    # set up logger
    timestring = str(date.today()) + '_' + \
        time.strftime("%Hh-%Mm-%Ss", time.localtime(time.time()))
    run_name = args.save_name + '_' + timestring
    configure("logs/run_" + run_name, flush_secs=5)

    env = LoveLetterEnv(AgentRandom(args.seed + rank), args.seed + rank)
    env.seed(args.seed + rank)
    state = env.reset()

    model = ActorCritic(state.shape[0], env.action_space).type(dtype)

    model.eval()

    state = torch.from_numpy(state).type(dtype)
    reward_sum = 0
    max_reward = -99999999
    max_winrate = 0
    rewards_recent = deque([], 100)
    done = True

    start_time = time.time()

    episode_length = 0
    while True:
        episode_length += 1
        # Sync with the shared model
        if done:
            model.load_state_dict(shared_model.state_dict())
            cx = Variable(torch.zeros(1, 256).type(dtype), volatile=True)
            hx = Variable(torch.zeros(1, 256).type(dtype), volatile=True)
        else:
            cx = Variable(cx.data.type(dtype), volatile=True)
            hx = Variable(hx.data.type(dtype), volatile=True)

        value, logit, (hx, cx) = model((Variable(state.unsqueeze(0),
                                                 volatile=True), (hx, cx)))
        prob = F.softmax(logit)
        action = prob.max(1)[1].data.cpu().numpy()

        state, reward, done, _ = env.step(action[0, 0])
        done = done or episode_length >= args.max_episode_length
        reward_sum += reward

        if done:
            rewards_recent.append(reward_sum)
            rewards_recent_avg = sum(rewards_recent) / len(rewards_recent)
            print(
                "{} | Episode Reward {: >4}, Length {: >2} | Avg Reward {:0.2f}"
                .format(
                    time.strftime("%Hh %Mm %Ss",
                                  time.gmtime(time.time() - start_time)),
                    reward_sum, episode_length, rewards_recent_avg))

            # if not stuck or args.evaluate:
            log_value('Reward', reward_sum, test_ctr)
            log_value('Reward Average', rewards_recent_avg, test_ctr)
            log_value('Episode length', episode_length, test_ctr)

            if reward_sum >= max_reward:
                # pickle.dump(shared_model.state_dict(), open(args.save_name + '_max' + '.p', 'wb'))
                path_output = args.save_name + '_max'
                torch.save(shared_model.state_dict(), path_output)
                path_now = "{}_{}".format(args.save_name,
                                          datetime.datetime.now().isoformat())
                torch.save(shared_model.state_dict(), path_now)
                max_reward = reward_sum

                win_rate_v_random = Arena.compare_agents_float(
                    lambda seed: AgentA3C(path_output, dtype, seed),
                    lambda seed: AgentRandom(seed), 800)
                msg = " {} | VsRandom: {: >4}%".format(
                    datetime.datetime.now().strftime("%c"),
                    round(win_rate_v_random * 100, 2))
                print(msg)
                log_value('Win Rate vs Random', win_rate_v_random, test_ctr)
                if win_rate_v_random > max_winrate:
                    print("Found superior model at {}".format(
                        datetime.datetime.now().isoformat()))
                    torch.save(
                        shared_model.state_dict(), "{}_{}_best_{}".format(
                            args.save_name,
                            datetime.datetime.now().isoformat(),
                            win_rate_v_random))
                    max_winrate = win_rate_v_random

            reward_sum = 0
            episode_length = 0
            state = env.reset()
            test_ctr += 1

            if test_ctr % 10 == 0 and not args.evaluate:
                # pickle.dump(shared_model.state_dict(), open(args.save_name + '.p', 'wb'))
                torch.save(shared_model.state_dict(), args.save_name)
            if not args.evaluate:
                time.sleep(60)
            elif test_ctr == evaluation_episodes:
                # Ensure the environment is closed so we can complete the
                # submission
                env.close()
                # gym.upload('monitor/' + run_name, api_key=api_key)

        state = torch.from_numpy(state).type(dtype)
コード例 #2
0
ファイル: a3c_train.py プロジェクト: adamschmideg/love-letter
def train(rank, args, shared_model, dtype):
    torch.manual_seed(args.seed + rank)

    env = LoveLetterEnv(AgentRandom(args.seed + rank), args.seed + rank)
    env.seed(args.seed + rank)
    state = env.reset()

    model = ActorCritic(state.shape[0], env.action_space).type(dtype)

    optimizer = optim.Adam(shared_model.parameters(), lr=args.lr)

    model.train()

    values = []
    log_probs = []

    state = torch.from_numpy(state).type(dtype)
    done = True

    episode_length = 0
    while True:
        episode_length += 1
        # Sync with the shared model
        model.load_state_dict(shared_model.state_dict())
        if done:
            cx = Variable(torch.zeros(1, 256).type(dtype))
            hx = Variable(torch.zeros(1, 256).type(dtype))
        else:
            cx = Variable(cx.data.type(dtype))
            hx = Variable(hx.data.type(dtype))

        values = []
        log_probs = []
        rewards = []
        entropies = []

        for step in range(args.num_steps):
            value, logit, (hx, cx) = model(
                (Variable(state.unsqueeze(0)), (hx, cx)))
            prob = F.softmax(logit)
            log_prob = F.log_softmax(logit)
            entropy = -(log_prob * prob).sum(1)
            entropies.append(entropy)

            action = prob.multinomial().data
            log_prob = log_prob.gather(1, Variable(action))

            state, reward, done, _ = env.step(action.cpu().numpy()[0][0])
            done = done or episode_length >= args.max_episode_length

            if done:
                episode_length = 0
                state = env.reset()

            state = torch.from_numpy(state).type(dtype)
            values.append(value)
            log_probs.append(log_prob)
            rewards.append(reward)

            if done:
                break

        R = torch.zeros(1, 1).type(dtype)
        if not done:
            value, _, _ = model((Variable(state.unsqueeze(0)), (hx, cx)))
            R = value.data

        values.append(Variable(R))
        policy_loss = 0
        value_loss = 0
        R = Variable(R)
        gae = torch.zeros(1, 1).type(dtype)
        for i in reversed(range(len(rewards))):
            R = args.gamma * R + rewards[i]
            advantage = R - values[i]
            value_loss = value_loss + 0.5 * advantage.pow(2)

            # Generalized Advantage Estimataion
            delta_t = rewards[i] + args.gamma * \
                values[i + 1].data - values[i].data
            gae = gae * args.gamma * args.tau + delta_t

            policy_loss = policy_loss - \
                log_probs[i] * Variable(gae) - args.beta * entropies[i]

        optimizer.zero_grad()

        (policy_loss + 0.5 * value_loss).backward()
        torch.nn.utils.clip_grad_norm(model.parameters(), 40)

        ensure_shared_grads(model, shared_model)
        optimizer.step()