コード例 #1
0
 def test_identify_input_output(self):
     g = GraphAnalyzer()
     g.graph = self.input_graph
     g.parse_graph()
     inputs, outputs = g.get_graph_input_output()
     self.assertEqual(inputs, self.inputs)
     self.assertEqual(outputs, self.outputs)
コード例 #2
0
    def __init__(self, model):
        self.model = model
        self.output_node_names = model.output_node_names
        self.input_node_names = model.input_node_names
        if model.iter_op is not None:
            self.output_node_names.append('MakeIterator')

        self.analyzer = GraphAnalyzer()
        self.analyzer.graph = model.graph_def
        self.analyzer.parse_graph()
        self.logger = logging.getLogger()
        self._tmp_graph_def = None
        self._excluded_node_names = []
コード例 #3
0
    def __init__(self, model, inputs_name, outputs_name):
        self.input_graph = get_graph_def(model, outputs_name)

        self.analyzer = GraphAnalyzer()
        self.analyzer.graph = self.input_graph
        self.analyzer.parse_graph()
        self.inputs = inputs_name
        self.outputs = outputs_name
        self.logger = logging.getLogger()
        self._tmp_graph_def = None
        # self.tf_version = tf.version.VERSION
        self._excluded_node_names = []
        if not self.inputs or not self.outputs:
            self.inputs, self.outputs = self.analyzer.get_graph_input_output()
コード例 #4
0
    def test_identify_input_output(self):
        g = GraphAnalyzer()
        g.graph = self.input_graph
        g.parse_graph()
        inputs, outputs = g.get_graph_input_output()
        self.assertEqual(inputs, self.inputs)
        self.assertEqual(outputs, self.outputs)

        input_graph = tf.compat.v1.GraphDef()
        with open('model_1.pb', "rb") as f:
            input_graph.ParseFromString(f.read())
        g = GraphAnalyzer()
        g.graph = input_graph
        g.parse_graph()
        inputs, outputs = g.get_graph_input_output()
        self.assertEqual(inputs, ['sub'])
        self.assertEqual(outputs, ['op_to_store'])

        input_graph = tf.compat.v1.GraphDef()
        with open('model_2.pb', "rb") as f:
            input_graph.ParseFromString(f.read())
        g = GraphAnalyzer()
        g.graph = input_graph
        g.parse_graph()
        inputs, outputs = g.get_graph_input_output()
        self.assertEqual(inputs, [])
        self.assertEqual(outputs, [])

        input_graph = tf.compat.v1.GraphDef()
        with open('model_3.pb', "rb") as f:
            input_graph.ParseFromString(f.read())
        g = GraphAnalyzer()
        g.graph = input_graph
        g.parse_graph()
        inputs, outputs = g.get_graph_input_output()
        self.assertEqual(inputs, [])
        self.assertEqual(outputs, [])
コード例 #5
0
    def test_no_input_output_config(self):
        g = GraphAnalyzer()
        g.graph = self.input_graph
        g.parse_graph()

        float_graph_def = g.dump_graph()
        from lpot import Quantization, common

        quantizer = Quantization('fake_yaml.yaml')
        dataset = quantizer.dataset('dummy', shape=(20, 224, 224, 3), label=True)
        quantizer.calib_dataloader = common.DataLoader(dataset, batch_size=2)
        quantizer.eval_dataloader = common.DataLoader(dataset, batch_size=2)
        quantizer.model = float_graph_def
        output_graph = quantizer()
        self.assertGreater(len(output_graph.graph_def.node), 0)
コード例 #6
0
    def test_replace_node(self):
        graph_analyzer = GraphAnalyzer()
        graph_analyzer.graph = copy.deepcopy(self.graph_def)

        graph_analyzer.parse_graph()

        new_add_node = node_def_pb2.NodeDef()
        new_add_node.op = "Add"
        new_add_node.name = "add1"
        new_add_node.input.extend(
            [self.input0_node.name, self.input1_node.name])
        graph_analyzer.replace_node(new_add_node, self.add_node.name,
                                    [self.mul_node.name])
        result_graph = graph_analyzer.dump_graph()
        assert self.add_node not in list(result_graph.node)
        assert new_add_node in list(result_graph.node)
コード例 #7
0
ファイル: pre_optimize.py プロジェクト: ftian1/lpot
    def __init__(self, model, inputs, outputs):
        self.output_node_names = list(
            set([output.split(":")[0] for output in outputs]))
        self.input_graph = get_graph_def(model, self.output_node_names)
        if 'MakeIterator' in [node.op for node in self.input_graph.node]:
            self.output_node_names.append('MakeIterator')

        self.analyzer = GraphAnalyzer()
        self.analyzer.graph = self.input_graph
        self.analyzer.parse_graph()
        self.input_node_names = inputs
        self.logger = logging.getLogger()
        self._tmp_graph_def = None
        self._excluded_node_names = []
        if not self.input_node_names or not self.output_node_names:
            self.input_node_names, self.output_node_names = self.analyzer.get_graph_input_output(
            )
コード例 #8
0
    def test_invalid_input_output_config(self):
        g = GraphAnalyzer()
        g.graph = self.input_graph
        g.parse_graph()

        float_graph_def = g.dump_graph()
        from lpot import Quantization, common

        quantizer = Quantization('fake_yaml_2.yaml')
        dataset = quantizer.dataset('dummy', shape=(20, 224, 224, 3), label=True)
        quantizer.calib_dataloader = common.DataLoader(dataset, batch_size=2)
        quantizer.eval_dataloader = common.DataLoader(dataset, batch_size=2)
        quantizer.model = float_graph_def
        model = quantizer()
        # will detect the right inputs/outputs
        self.assertNotEqual(model.input_node_names, ['x'])
        self.assertNotEqual(model.output_node_names, ['op_to_store'])
コード例 #9
0
    def test_replace_constant_graph_with_constant_node(self):
        graph_analyzer = GraphAnalyzer()
        graph_analyzer.graph = copy.deepcopy(self.graph_def)

        graph_analyzer.parse_graph()

        new_constant_value = np.random.random([4, 1])
        new_constant_type = tf.as_dtype(np.float32(new_constant_value).dtype)
        new_constant_node = GraphRewriterHelper.create_constant_node(
            self.add_node.name + "_const", new_constant_value,
            new_constant_type)
        assert graph_analyzer.replace_constant_graph_with_constant_node(
            new_constant_node, self.add_node.name)
        result_graph = graph_analyzer.dump_graph()
        assert len(list(result_graph.node)) == 10

        new_constant_value = np.random.random([4, 1])
        new_constant_type = tf.as_dtype(np.float32(new_constant_value).dtype)
        new_constant_node = GraphRewriterHelper.create_constant_node(
            self.mul_node.name + "_const", new_constant_value,
            new_constant_type)
        assert graph_analyzer.replace_constant_graph_with_constant_node(
            new_constant_node, self.mul_node.name)
        result_graph = graph_analyzer.dump_graph()
        assert len(list(result_graph.node)) == 8

        new_constant_value = np.random.random([4, 1])
        new_constant_type = tf.as_dtype(np.float32(new_constant_value).dtype)
        new_constant_node = GraphRewriterHelper.create_constant_node(
            self.sqrt_node.name + "_const", new_constant_value,
            new_constant_type)
        assert graph_analyzer.replace_constant_graph_with_constant_node(
            new_constant_node, self.sqrt_node.name)
        result_graph = graph_analyzer.dump_graph()
        assert len(list(result_graph.node)) == 7

        new_constant_value = np.random.random([4, 1])
        new_constant_type = tf.as_dtype(np.float32(new_constant_value).dtype)
        new_constant_node = GraphRewriterHelper.create_constant_node(
            self.block_node.name + "_const", new_constant_value,
            new_constant_type)
        assert not graph_analyzer.replace_constant_graph_with_constant_node(
            new_constant_node, self.block_node.name)
コード例 #10
0
    def test_tensorflow_concat_quantization(self):

        output_graph_def = read_graph(self.pb_path)
        from lpot import Quantization

        quantizer = Quantization('fake_yaml.yaml')
        dataset = quantizer.dataset('dummy',
                                    shape=(100, 299, 299, 3),
                                    label=True)
        dataloader = quantizer.dataloader(dataset)
        output_graph = quantizer(output_graph_def,
                                 q_dataloader=dataloader,
                                 eval_dataloader=dataloader)
        found_quantized_concat_node = False

        target_concat_node_name = 'v0/cg/incept_v3_a0/concat_eightbit_quantized_concatv2'
        from lpot.adaptor.tf_utils.graph_rewriter.graph_util import GraphAnalyzer
        cur_graph = GraphAnalyzer()
        cur_graph.graph = output_graph.as_graph_def()
        graph_info = cur_graph.parse_graph()
        found_quantized_concat_node = target_concat_node_name in graph_info

        self.assertEqual(found_quantized_concat_node, True)
        min_out, max_out = [], []
        for input_conv_name in graph_info[
                target_concat_node_name].node.input[:4]:
            # print (input_conv_name, graph_info[input_conv_name].node.input)
            min_freezed_out_name = graph_info[input_conv_name].node.input[-2]
            max_freezed_out_name = graph_info[input_conv_name].node.input[-1]
            min_freezed_out_value = (graph_info[min_freezed_out_name].node.
                                     attr['value'].tensor.float_val)[0]
            max_freezed_out_value = (graph_info[max_freezed_out_name].node.
                                     attr['value'].tensor.float_val)[0]
            min_out.append(min_freezed_out_value)
            max_out.append(max_freezed_out_value)

        self.assertEqual(len(set(min_out)), 1)
        self.assertEqual(len(set(max_out)), 1)
コード例 #11
0
    def test_graph_cse(self):
        tf.compat.v1.disable_eager_execution()

        input_constant_name = "input_constant"
        relu_name = "relu"
        float_graph_def = graph_pb2.GraphDef()
        input_constant = QuantizeGraphHelper.create_constant_node(
            input_constant_name,
            value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
            dtype=dtypes.float32,
            shape=[1, 2, 6, 1])
        float_graph_def.node.extend([input_constant])
        relu_node = QuantizeGraphHelper.create_node("Relu", relu_name,
                                                    [input_constant_name])
        QuantizeGraphHelper.set_attr_dtype(relu_node, "T", dtypes.float32)
        float_graph_def.node.extend([relu_node])

        b_constant_name = "b_constant"
        mat_mul_name = "mat_mul"
        b_constant = QuantizeGraphHelper.create_constant_node(
            b_constant_name,
            value=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],
            dtype=dtypes.float32,
            shape=[2, 6])
        float_graph_def.node.extend([b_constant])

        mat_mul_node = QuantizeGraphHelper.create_node(
            "MatMul", mat_mul_name, [relu_name, b_constant_name])
        QuantizeGraphHelper.set_attr_dtype(mat_mul_node, "T", dtypes.float32)
        QuantizeGraphHelper.set_attr_bool(mat_mul_node, "transpose_a", False)
        QuantizeGraphHelper.set_attr_bool(mat_mul_node, "transpose_b", False)
        float_graph_def.node.extend([mat_mul_node])

        bias_add_name = "bias_add"
        offset_constant_name = "offset_constant"

        offset_constant = QuantizeGraphHelper.create_constant_node(
            offset_constant_name,
            value=[1, 2, 3, 4, 5, 6],
            dtype=dtypes.float32,
            shape=[6])
        float_graph_def.node.extend([offset_constant])
        bias_add_node = QuantizeGraphHelper.create_node(
            "BiasAdd", bias_add_name, [mat_mul_name, offset_constant_name])
        QuantizeGraphHelper.set_attr_dtype(bias_add_node, "T", dtypes.float32)
        float_graph_def.node.extend([bias_add_node])

        post_relu_name = "post_relu"
        post_relu_node = QuantizeGraphHelper.create_node(
            "Relu", post_relu_name, [bias_add_name])
        float_graph_def.node.extend([post_relu_node])

        last_identity_node_name = 'last_identity'
        last_identity_node = QuantizeGraphHelper.create_node(
            "Identity", last_identity_node_name, [post_relu_name])
        float_graph_def.node.extend([last_identity_node])

        analyzer = GraphAnalyzer()
        analyzer.graph = float_graph_def
        analyzer.parse_graph()
        res = analyzer.query_fusion_pattern_nodes([['MatMul'], ("BiasAdd"),
                                                   ("Relu")])
        self.assertEqual(3, len(res[0][-1]))