コード例 #1
0
ファイル: test_adaptor_pytorch.py プロジェクト: mbasnet1/lpot
 def test_tuning_ipex(self):
     from lpot import Quantization
     model = torchvision.models.resnet18()
     model = MODELS['pytorch_ipex'](model)
     quantizer = Quantization('ipex_yaml.yaml')
     dataset = quantizer.dataset('dummy', (100, 3, 256, 256), label=True)
     quantizer.model = common.Model(model)
     quantizer.calib_dataloader = common.DataLoader(dataset)
     quantizer.eval_dataloader = common.DataLoader(dataset)
     lpot_model = quantizer()
     lpot_model.save("./saved")
     new_model = MODELS['pytorch_ipex'](model.model, {
         "workspace_path": "./saved"
     })
     new_model.model.to(ipex.DEVICE)
     try:
         script_model = torch.jit.script(new_model.model)
     except:
         script_model = torch.jit.trace(
             new_model.model,
             torch.randn(10, 3, 224, 224).to(ipex.DEVICE))
     from lpot import Benchmark
     evaluator = Benchmark('ipex_yaml.yaml')
     evaluator.model = common.Model(script_model)
     evaluator.b_dataloader = common.DataLoader(dataset)
     results = evaluator()
コード例 #2
0
ファイル: test_adaptor_pytorch.py プロジェクト: mbasnet1/lpot
    def test_quantization_saved(self):
        from lpot.utils.pytorch import load

        model = copy.deepcopy(self.model)

        for fake_yaml in ['qat_yaml.yaml', 'ptq_yaml.yaml']:
            if fake_yaml == 'ptq_yaml.yaml':
                model.eval().fuse_model()
            quantizer = Quantization(fake_yaml)
            dataset = quantizer.dataset('dummy', (100, 3, 256, 256),
                                        label=True)
            quantizer.model = common.Model(model)
            quantizer.calib_dataloader = common.DataLoader(dataset)
            quantizer.eval_dataloader = common.DataLoader(dataset)
            if fake_yaml == 'qat_yaml.yaml':
                quantizer.q_func = q_func
            q_model = quantizer()
            q_model.save('./saved')
            # Load configure and weights by lpot.utils
            saved_model = load("./saved", model)
            eval_func(saved_model)
        from lpot import Benchmark
        evaluator = Benchmark('ptq_yaml.yaml')
        # Load configure and weights by lpot.model
        evaluator.model = common.Model(model)
        evaluator.b_dataloader = common.DataLoader(dataset)
        results = evaluator()
        evaluator.model = common.Model(model)
        fp32_results = evaluator()
        self.assertTrue(
            (fp32_results['accuracy'][0] - results['accuracy'][0]) < 0.01)
コード例 #3
0
    def test_register_metric_postprocess(self):
        import PIL.Image
        image = np.array(PIL.Image.open(self.image_path))
        resize_image = np.resize(image, (224, 224, 3))
        mean = [123.68, 116.78, 103.94]
        resize_image = resize_image - mean
        images = np.expand_dims(resize_image, axis=0)
        labels = [768]
        from lpot import Benchmark, Quantization, common
        from lpot.data.transforms.imagenet_transform import LabelShift
        from lpot.metric.metric import TensorflowTopK

        evaluator = Benchmark('fake_yaml.yaml')
        evaluator.postprocess = common.Postprocess(LabelShift,
                                                   'label_benchmark',
                                                   label_shift=1)
        evaluator.metric = common.Metric(TensorflowTopK, 'topk_benchmark')
        evaluator.b_dataloader = common.DataLoader(
            dataset=list(zip(images, labels)))
        evaluator.model = self.pb_path
        result = evaluator()
        acc, batch_size, result_list = result['accuracy']
        self.assertEqual(acc, 0.0)

        quantizer = Quantization('fake_yaml.yaml')
        quantizer.postprocess = common.Postprocess(LabelShift,
                                                   'label_quantize',
                                                   label_shift=1)
        quantizer.metric = common.Metric(TensorflowTopK, 'topk_quantize')

        evaluator = Benchmark('fake_yaml.yaml')
        evaluator.metric = common.Metric(TensorflowTopK, 'topk_second')

        evaluator.b_dataloader = common.DataLoader(
            dataset=list(zip(images, labels)))
        evaluator.model = self.pb_path
        result = evaluator()
        acc, batch_size, result_list = result['accuracy']
        self.assertEqual(acc, 0.0)
コード例 #4
0
ファイル: oob_general.py プロジェクト: mbasnet1/lpot
        input_shapes = [shape.split('x') for shape in input_shapes]
        shapes = [tuple([args.benchmark_nums] + [int(dim) for dim in shape]) for shape in input_shapes]

    from lpot.data.datasets.dummy_dataset import DummyDataset
    from lpot.data.dataloaders.onnxrt_dataloader import ONNXRTDataLoader
    dummy_dataset = DummyDataset(shapes, low=lows, high=highs, dtype=dtypes, label=True)
    dummy_dataloader = ONNXRTDataLoader(dummy_dataset, batch_size=args.eval_batch_size)

    def eval_func(model):
        return evaluate_onnxrt(model, dummy_dataloader, reference)

    if args.benchmark:
        from lpot import Benchmark, common
        evaluator = Benchmark(args.config)
        evaluator.model = common.Model(model)
        evaluator.b_dataloader = dummy_dataloader
        results = evaluator()
        for mode, result in results.items():
            acc, batch_size, result_list = result
            latency = np.array(result_list).mean() / batch_size

            print('\n quantized model {} mode benchmark result:'.format(mode))
            print('Accuracy is {:.3f}'.format(acc))
            print('Batch size = {}'.format(batch_size))
            print('Latency: {:.3f} ms'.format(latency * 1000))
            print('Throughput: {:.3f} images/sec'.format(batch_size * 1./ latency))
    
    if args.tune:

        from lpot import Quantization, common
        quantize = Quantization(args.config)