コード例 #1
0
def make_quadcost(
    state_size: int,
    ctrl_size: int,
    horizon: int,
    stationary: bool = True,
    n_batch: Optional[int] = None,
    linear: bool = False,
    cross_terms: bool = False,
    rng: RNG = None,
) -> QuadCost:
    """Generate quadratic cost parameters.

    Args:
        state_size: size of state vector
        ctrl_size: size of control vector
        horizon: length of the horizon
        stationary: whether dynamics vary with time
        n_batch: batch size, if any
        linear: whether to include a linear term in addition to the quadratic
        cross_terms: whether to include state-ctrl cross terms in the quadratic
            (C_sa and C_as)
        rng: random number generator, seed, or None
    """
    # pylint:disable=too-many-arguments,too-many-locals
    rng = np.random.default_rng(rng)
    n_tau = state_size + ctrl_size

    kwargs = dict(horizon=horizon,
                  stationary=stationary,
                  n_batch=n_batch,
                  rng=rng)

    C = utils.random_spd_matrix(n_tau, **kwargs)
    C_s, C_a = nt.split(C, [state_size, ctrl_size], dim="C")
    C_ss, C_sa = nt.split(C_s, [state_size, ctrl_size], dim="R")
    C_as, C_aa = nt.split(C_a, [state_size, ctrl_size], dim="R")

    if not cross_terms:
        C_sa, C_as = torch.zeros_like(C_sa), torch.zeros_like(C_as)

    C_s = torch.cat((C_ss, C_sa), dim="R")
    C_a = torch.cat((C_as, C_aa), dim="R")
    C = torch.cat((C_s, C_a), dim="C")

    if linear:
        c = utils.random_normal_vector(n_tau, **kwargs)
    else:
        c = utils.expand_and_refine(nt.vector(torch.zeros(n_tau)),
                                    1,
                                    horizon=horizon,
                                    n_batch=n_batch)
    return QuadCost(C, c)
コード例 #2
0
def unpack_obs(obs: Tensor) -> tuple[Tensor, IntTensor]:
    """Unpack observation into state variables and time.

    Expects observation as a named 'vector' tensor.
    """
    # noinspection PyArgumentList
    state, time = nt.split(obs, [obs.size("R") - 1, 1], dim="R")
    time = time.int()
    return state, time
コード例 #3
0
def last_obs(
    n_state: int,
    horizon: int,
    batch_shape: tuple[int, ...],
    batch_names: tuple[str, ...],
) -> Tensor:
    state = nt.vector(torch.randn(batch_shape + (n_state, ))).refine_names(
        *batch_names, ...)
    dummy, _ = nt.split(state, [1, n_state - 1], dim="R")
    time = torch.full_like(dummy, fill_value=horizon).int()
    return pack_obs(state, time).requires_grad_()
コード例 #4
0
def obs(
    n_state: int,
    horizon: int,
    batch_shape: tuple[int, ...],
    batch_names: tuple[str, ...],
) -> Tensor:
    state = nt.vector(torch.randn(batch_shape + (n_state, ))).refine_names(
        *batch_names, ...)
    dummy, _ = nt.split(state, [1, n_state - 1], dim="R")
    time = torch.randint_like(nt.unnamed(dummy), low=0, high=horizon)
    time = time.refine_names(*dummy.names).int()
    return pack_obs(state, time).requires_grad_()
コード例 #5
0
def dynamics_factors(dynamics: AnyDynamics) -> tuple[Tensor, Tensor]:
    """Returns the unactuated and actuaded parts of the transition matrix."""
    # pylint:disable=invalid-name
    n_state, n_ctrl, _ = dims_from_dynamics(dynamics)
    F_s, F_a = nt.split(dynamics.F, [n_state, n_ctrl], dim="C")
    return F_s, F_a