コード例 #1
0
    def __init__(self, filename):
        self.__filename = os.path.abspath(filename)

        if self.__filename not in _LOCKS:
            _LOCKS[self.__filename] = RLock()

        self.__lock = _LOCKS[self.__filename]
        self.__db = LSM(self.__filename)
        self.__closed = False
コード例 #2
0
ファイル: o2.py プロジェクト: eugene-eeo/o2
class Index(object):
    def __init__(self, db_path):
        self.db = LSM(db_path)

    def has_changed(self, path):
        return self.db[path] != checksum(path)

    def update(self, files=()):
        with self.db.transaction() as txn:
            for path in files:
                self.db[path] = checksum(path)

    def __iter__(self):
        return iter(self.db.keys())

    @property
    def changed(self):
        return [path for path in self if self.has_changed(path)]
コード例 #3
0
ファイル: db.py プロジェクト: sorrat/tiny-url
class Db:
    def __init__(self):
        self.path = settings.DB_PATH
        self.db = LSM(self.path)

    def __getitem__(self, key):
        return self.db[key]

    def __setitem__(self, key, item):
        self.db[key] = item

    def __contains__(self, key):
        return key in self.db

    def reset(self):
        self.db.close()
        os.remove(self.path)
        self.db = LSM(self.path)
コード例 #4
0
def database_open(root, recreate=False):
    root = root if isinstance(root, Path) else Path(root)
    db = root / ".mutation.okvslite"
    if recreate and db.exists():
        log.trace("Deleting existing database...")
        for file in root.glob(".mutation.okvslite*"):
            file.unlink()

    if not recreate and not db.exists():
        log.error("No database, can not proceed!")
        sys.exit(1)

    db = LSM(str(db))

    return db
コード例 #5
0
ファイル: fuzz.py プロジェクト: amirouche/fuzzbuzz
def main():
    LIMIT = 10
    db = LSM('fuzzbuzz.ldb')

    if sys.argv[1] == 'index':

        with open(sys.argv[2]) as f:
            for index, line in enumerate(f):
                line = line.strip()
                if index % 10_000 == 0:
                    print(index, line)
                url, label = line.split('\t')
                if not all(x in ascii_lowercase for x in label):
                    continue
                if ' ' in label:
                    continue
                key = bbkh(label)
                db[pack((key, label))] = b'\x42'
コード例 #6
0
def install_module_loader(uid):
    db = LSM(".mutation.okvslite")

    mutation_show(uid.hex)

    path, diff = lexode.unpack(db[lexode.pack([1, uid])])
    diff = zstd.decompress(diff).decode("utf8")

    with open(path) as f:
        source = f.read()

    patched = patch(diff, source)

    import imp

    components = path[:-3].split("/")

    while components:
        for pythonpath in sys.path:
            filepath = os.path.join(pythonpath, "/".join(components))
            filepath += ".py"
            ok = os.path.exists(filepath)
            if ok:
                module_path = ".".join(components)
                break
        else:
            components.pop()
            continue
        break
    if module_path is None:
        raise Exception("sys.path oops!")

    patched_module = imp.new_module(module_path)
    try:
        exec(patched, patched_module.__dict__)
    except Exception:
        # TODO: syntaxerror, do not produce those mutations
        exec("", patched_module.__dict__)

    sys.modules[module_path] = patched_module
コード例 #7
0
ファイル: o2.py プロジェクト: eugene-eeo/o2
 def __init__(self, db_path):
     self.db = LSM(db_path)
コード例 #8
0
 def get(cls, name):
     path = settings.DISK_CACHE_ROOT + name + '.ldb'
     return LSM(path)
コード例 #9
0
ファイル: middlewares.py プロジェクト: enixdark/trip
class LSMEngine(object):
	# create lsm key-value database to cache key for update data in other DB
    db = LSM(''.join([settings['LSM_PATH'],settings['LSM_DBNAME']]))
コード例 #10
0
SMS_NOTIFICATIONS = dict([
    (10,
     "10д. Долейте воду и удобрения: Micro-12.5мл, Grow-12.5мл, Bloom-12.5мл"),
    (20, "20д. Долейте воду и удобрения: Micro-25мл, Grow-25мл, Bloom-25мл"),
    (30, "30д. Долейте воду и удобрения: Micro-25мл, Grow-25мл, Bloom-25мл"),
    (45, "45д. Начните новый цикл. Детали: http://admin.vhnh.hort.io/today")
])

# Setup IO
mcp = MCP.MCP23008()

for out in range(8):
    mcp.setup(out, GPIO.OUT)

# Setup DB
db = LSM(os.getenv("DB_FILE", "/data/hortio.ldb"))


def pca9548a_setup(pca9548a_channel):
    """
    Set i2c multiplexer (pca9548a) channel
    """
    pca9548a = I2C.get_i2c_device(PCA9548A_ADDR)
    pca9548a.writeRaw8(pca9548a_channel)
    time.sleep(0.1)


def db_get(key):
    if key in DEFAULT_STATES:
        default_value = DEFAULT_STATES[key]
    else:
コード例 #11
0
ファイル: db.py プロジェクト: sorrat/tiny-url
 def reset(self):
     self.db.close()
     os.remove(self.path)
     self.db = LSM(self.path)
コード例 #12
0
ファイル: mapstore.py プロジェクト: t-pleasure/productcloud
 def __init__(self, id, serialize=identity_fn, deserialize=identity_fn):
   self.dbfile = "%s.kvdb"%id
   self.db = LSM(self.dbfile)
   self.serialize = serialize
   self.deserialize = deserialize
コード例 #13
0
class Base(MutableMapping):
    __slots__ = "__db", "__lock", "__closed", "__filename",

    def __init__(self, filename):
        self.__filename = os.path.abspath(filename)

        if self.__filename not in _LOCKS:
            _LOCKS[self.__filename] = RLock()

        self.__lock = _LOCKS[self.__filename]
        self.__db = LSM(self.__filename)
        self.__closed = False

    @property
    def _db(self):
        if self.__closed:
            raise RuntimeError("Database closed")

        return self.__db

    def __iter__(self):
        with self.__lock:
            for key in self._db.keys():
                yield self._decode_key(key)

    def __len__(self):
        # FIXME: It's so slow
        with self.__lock:
            return sum(1 for _ in self._db.keys())

    def __contains__(self, key):
        return self._encode_key(key) in self._db

    def get(self, key, default=None):
        try:
            return self[key]
        except KeyError:
            return default

    def __getitem__(self, key):
        _key = self._encode_key(key)
        return self._decode_value(self._db[_key])

    def __setitem__(self, key, value):
        _key = self._encode_key(key)
        _value = self._encode_value(value)

        with self.__lock:
            error = True
            while error:
                try:
                    self._db[_key] = _value
                    error = False
                except Exception as e:
                    if e.args[0] != "Busy":
                        raise
                    continue

    def __delitem__(self, key):
        return self.delete(key)

    def delete(self, key):
        with self.__lock:
            error = True
            while error:
                try:
                    self._db.delete(self._encode_key(key))
                    error = False
                except Exception as e:
                    if e.args[0] != "Busy":
                        raise
                    continue

    def __enter__(self):
        return self

    def __exit__(self, type, value, traceback):
        self.close()

    @property
    def closed(self):
        return self.__closed

    @property
    def filename(self):
        return self.__filename

    def close(self):
        if self.__closed:
            return

        self.__closed = True

        with self.__lock:
            self.__db.close()

    def __del__(self):
        if self.filename in _LOCKS:
            del _LOCKS[self.filename]

        self.close()

    def sync(self):
        with self.__lock:
            self._db.flush()

    def __repr__(self):
        return "<LSMShelf: %r>" % self.filename

    @abc.abstractmethod
    def _encode_key(self, key):
        raise NotImplementedError

    @abc.abstractmethod
    def _decode_key(self, key):
        raise NotImplementedError

    @abc.abstractmethod
    def _encode_value(self, value):
        raise NotImplementedError

    @abc.abstractmethod
    def _decode_value(self, value):
        raise NotImplementedError
コード例 #14
0
ファイル: config.py プロジェクト: Sp3kE-hack/echoall
from lsm import LSM
API_TOKEN = ""  # токен из botfather
DB_FILE = "db.ldb"  # название файла базы данных
TIME_FORMAT = "%Y-%m-%d %H:%M:%S"
EXIT_TIME_FORMAT = "{:02} часов {:02} минут {:02} секунд"
TIME = 12  # 12 часов
db = LSM(DB_FILE)
if bytes("count", "ascii") not in db.keys():
    db["count"] = 0
strings = {
    "start":
    f"Привет! Я буду отправлять твоё сообщение всем своим пользователям. Ты можешб отправить только одно "
    f"анонимное сообщение раз в {TIME} секунд",
    "send":
    "Хорошо, твоё сообщение будет отправлено {} пользователям!",
    "source":
    "Исходный код опубликован <a href='github.com/Sp3kE-hack/echoall'>тут</a>",
    "stats":
    "Всего пользователей в боте: {}",
    "wtf":
    "Неизвестная команда!",
    "already":
    "Ты уже отправлял сообщение, вернись через {}"
}
コード例 #15
0
ファイル: typofix.py プロジェクト: amirouche/fuzzbuzz
import sys

from time import time
from collections import Counter

from rapidfuzz import fuzz
from fuzz import bbkh
from lsm import LSM
from lsm import SEEK_LE, SEEK_GE
from tuple import pack, unpack, strinc

f = open(sys.argv[1])

db = LSM('fuzzbuzz.ldb')

for index, line in enumerate(f):
    print(index)
    line = line.lower()
    wrong, goods = line.split('->')
    goods = [x.strip() for x in goods.split(',')]

    begin = time()
    limit = 100
    query = wrong.lower()

    key = bbkh(query)

    distances = Counter()
    start = pack((key, ))

    with db.cursor() as cursor:
コード例 #16
0
ファイル: lsmdb_experiment.py プロジェクト: vidardb/PyVidarDB
# def random_string_generator(n):
#     return ''.join(random.choice(string.digits) for _ in range(n))

db_name = "lsm_experiment.ldb"
put_range = 1000000  # 200000000
latest_data_num = 5000
random_get_range = 5000

data_list = list()
latest_data_list = list()

if os.path.exists(db_name):
    os.remove(db_name)

db = LSM(db_name)

now = datetime.now()
current_time = now.strftime("%H:%M:%S")

print("-------------------------------------")
print("Experiment start at: ", current_time)
print("[Put Data Number]: ", put_range)
# print("[Latest Data Number]:", latest_data_num)
print("[Random Get Number]:", random_get_range)

put_start = time.time()
for each in range(put_range):
    # k = random_string_generator(10).encode()
    # k = str(random.uniform(1, 10000)).encode()
    k = random.uniform(1, 10000)
コード例 #17
0
ファイル: database.py プロジェクト: BartMelman/fever
    def __init__(self,
                 path_database_dir,
                 database_name,
                 database_method,
                 input_type,
                 output_type,
                 encoding='utf-8',
                 checks_flag=True):
        # input:
        # - path_database_dir : path of the directory of the database
        # - database_name : name of database without extension
        # - database_method : package/method used to construct database
        # - input_type : format of key in dictionary that should always
        #     be used for the database (e.g.'str', 'int', 'float', etc, )
        # - output_type : format of value of dictionary that is
        #     fixed for the database (e.g. 'str', 'int', 'float', etc)
        # - encoding : encoding for characters
        # - check_flags :

        self.path_database_dir = path_database_dir
        self.database_name = database_name
        self.database_method = database_method
        self.input_type = input_type
        self.output_type = output_type
        self.encoding = encoding
        self.checks_flag = checks_flag

        self.path_settings = os.path.join(
            path_database_dir,
            'settings_' + database_name + '_' + self.database_method + '.json')

        mkdir_if_not_exist(path_database_dir)

        self.settings_keys = [
            'database_method', 'input_type', 'output_type', 'encoding'
        ]
        self.settings_values = [
            self.database_method, self.input_type, self.output_type,
            self.encoding
        ]

        if os.path.isfile(self.path_settings):
            settings = dict_load_json(self.path_settings)
            if len(self.settings_keys) == len(settings['settings_keys']):
                for i in range(len(self.settings_keys)):
                    if settings['settings_values'][i] != self.settings_values[i] or settings['settings_keys'][i] != \
                            self.settings_keys[i]:
                        raise ValueError(
                            'saved settings dictionary does not correspond to the settings passed for this database'
                        )
            else:
                raise ValueError(
                    'saved settings dictionary does not correspond to the settings passed for this database'
                )
        else:
            self.settings = {}

            for i in range(len(self.settings_keys)):
                key = self.settings_keys[i]
                value = self.settings_values[i]
                self.settings[key] = value

            self.settings['settings_keys'] = self.settings_keys
            self.settings['settings_values'] = self.settings_values

            self.save_settings()

        if self.database_method == 'lsm':
            self.path_database = os.path.join(path_database_dir,
                                              database_name + '.ldb')
            self.db = LSM(self.path_database)

        elif self.database_method == 'json':
            # only allows data types that can be converted to string
            self.path_database = os.path.join(path_database_dir,
                                              database_name + '.json')
            list_allowed_types = ['string', 'int', 'float']
            if self.input_type not in list_allowed_types:
                raise ValueError('input type not in allowed list',
                                 self.input_type)

            if self.output_type not in list_allowed_types:
                raise ValueError('output type not in allowed list',
                                 self.output_type)

            if os.path.isfile(self.path_database):
                print('load database at: ' + self.path_database)
                self.db = database_load_json(self.path_database, self.encoding)
            else:
                self.db = {}
        else:
            raise ValueError('database_method is not in options',
                             self.database_method)
コード例 #18
0
ファイル: main.py プロジェクト: taniilab/hattori
    def simulate(self, process):
        # parallel processing on each setting value
        self.pid = os.getpid()
        self.neuron = Neuron(**self.parm[process+self.process_counter])
        self.neuron.parm_dict = self.parm[process+self.process_counter]
        self.progress_counter = self.now_cycle_multiproc*self.neuron.allsteps

        # record
        d = datetime.datetime.today()
        filename = "{0}_{1}_{2}_{3}_{4}_{5}_" \
                   "Iext_amp{6}_Pmax_AMPA{7}_Pmax_NMDA{8}_LIF".format(d.year,
                                                                          d.month,
                                                                          d.day,
                                                                          d.hour,
                                                                          d.minute,
                                                                          d.second,
                                                                          self.neuron.Iext_amp,
                                                                          self.neuron.Pmax_AMPA,
                                                                          self.neuron.Pmax_NMDA)
        df = pd.DataFrame(columns=[filename])
        df.to_csv(save_path + '/' + filename + '.csv')
        df = pd.DataFrame()
        for k in range(numneu):
            df['T_{} [ms]'.format(k)] = ""
            df['V_{} [mV]'.format(k)] = ""
            df['fire_{}'.format(k)] = ""
            df['I_syn_{} [uA]'.format(k)] = ""
            df['I_AMPA_{} [uA]'.format(k)] = ""
            df['I_NMDA_{} [uA]'.format(k)] = ""
            df['Iext_{} [uA]'.format(k)] = ""
            df['I_noise_{} [uA]'.format(k)] = ""
        df.to_csv(save_path + '/' + filename + '.csv', mode='a')

        ####### MAIN PROCESS #######
        for j in range(num_lump):
            self.input_generator_sin()
            #self.input_generator_mackey_glass()

            ####### MAIN CYCLE #######
            for i in range(0, self.neuron.allsteps-1):
                self.neuron.propagation()

                if self.progress_counter % 1000 == 0:
                    self.log = 'process id : ' + str(self.pid) + ' : ' + \
                                str(self.progress_counter) + ' steps : ' + \
                                str(round(self.progress_counter*100/self.overall_steps, 1)) + "%"
                    print(self.log)
                self.progress_counter += 1

            # record
            df = pd.DataFrame()
            for k in range(numneu):
                df['T_{} [ms]'.format(k)] = self.neuron.Tsteps
                df['V_{} [mV]'.format(k)] = self.neuron.V[k]
                df['fire_{}'.format(k)] = self.neuron.t_fire_list[k]
                df['I_syn_{} [uA]'.format(k)] = self.neuron.Isyn[k]
                df['I_AMPA_{} [uA]'.format(k)] = self.neuron.IAMPA[k]
                df['I_NMDA_{} [uA]'.format(k)] = self.neuron.INMDA[k]
                df['Iext_{} [uA]'.format(k)] = self.neuron.Iext[k]
                df['I_noise_{} [uA]'.format(k)] = self.neuron.Inoise[k]
            df = df[:-1]
            df.to_csv(save_path + '/' + filename + '.csv', mode='a', header=None)

            # Preparation for calculating the next lump
            self.neuron.Tsteps = self.neuron.Tsteps + lump
            self.neuron.V = np.fliplr(self.neuron.V)
            self.neuron.Isyn = np.fliplr(self.neuron.Isyn)
            self.neuron.Isyn[:, 1:] = 0
            self.neuron.IAMPA = np.fliplr(self.neuron.IAMPA)
            self.neuron.IAMPA[:, 1:] = 0
            self.neuron.INMDA = np.fliplr(self.neuron.INMDA)
            self.neuron.INMDA[:, 1:] = 0
            self.neuron.R_AMPA = np.flip(self.neuron.R_AMPA, axis=2)
            self.neuron.R_AMPA[:, :, 1:] = 0
            self.neuron.R_NMDA = np.flip(self.neuron.R_NMDA, axis=2)
            self.neuron.R_NMDA[:, :, 1:] = 0
            self.neuron.E_AMPA = np.flip(self.neuron.E_AMPA, axis=2)
            self.neuron.E_AMPA[:, :, 1:] = 0
            self.neuron.E_NMDA = np.flip(self.neuron.E_NMDA, axis=2)
            self.neuron.E_NMDA[:, :, 1:] = 0
            self.neuron.I_AMPA = np.flip(self.neuron.I_AMPA, axis=2)
            self.neuron.I_AMPA[:, :, 1:] = 0
            self.neuron.I_NMDA = np.flip(self.neuron.I_NMDA, axis=2)
            self.neuron.I_NMDA[:, :, 1:] = 0
            self.neuron.Iext = np.fliplr(self.neuron.Iext)
            self.neuron.t_fire_list = 0 * self.neuron.t_fire_list
            self.neuron.Inoise = np.fliplr(self.neuron.Inoise)
            self.neuron.dn = np.fliplr(self.neuron.dn)
            self.neuron.dWt = np.fliplr(self.neuron.dWt)
            self.neuron.curstep = 0
            self.lump_counter += 1
        ####### MAIN PROCESS END#######


        # Visualization of connection structure
        # graphbiz must be installed
        if not os.path.isdir(save_path + '/dot'):
            os.mkdir(save_path + '/dot')
        if not os.path.isdir(save_path + '/structure'):
            os.mkdir(save_path + '/structure')
        dot_txt = 'digraph g{\n'
        dot_txt += 'graph [ dpi = 300, ratio = 1.0];\n'
        for i in range(numneu):
            dot_txt += '{} [label="{}", color=lightseagreen, fontcolor=white, style=filled]\n'.format(i, 'N'+str(i+1))
        for i, j in itertools.product(range(numneu), range(numneu)):
            if self.neuron.Syn_weight[i, j] != 0:
                dot_txt += '{}->{}\n'.format(i, j)
        dot_txt += "}\n"

        with open(save_path + '/dot/' + filename + '.dot', 'w') as f:
            f.write(dot_txt)
        self.cmd = 'dot {} -T png -o {}'.format(save_path + '/dot/' + filename + '.dot', save_path + '/structure/' + filename + '.png')
        subprocess.run(self.cmd, shell=True)


        # Rastergram
        plt.rcParams["font.size"] = 28
        if not os.path.isdir(save_path + '/rastergram'):
            os.mkdir(save_path + '/rastergram')
        num_read_nodes = numneu
        raster_line_length = 1
        raster_line_width = 0.5
        read_cols = ['T_0 [ms]']
        ytick_list = []
        for i in range(num_read_nodes):
            ytick_list.append(i + 1)
            read_cols.append('fire_{}'.format(i))

        df = pd.read_csv(save_path + '/' + filename + '.csv', usecols=read_cols, skiprows=1)[read_cols]
        fig = plt.figure(figsize=(20, 10))
        ax = fig.add_subplot(111)
        ax.set_ylim(0, num_read_nodes + 1)
        ax.set_yticks(ytick_list)
        ax.set_xlabel("Time [ms]")
        ax.set_ylabel("Neuron number")
        for i in range(num_read_nodes):
            for j in range(len(df.values[:, 0])):
                if df.values[j, i + 1] != 0:
                    x = df.values[j, 0]
                    ax.plot([x, x], [i + 1 - (raster_line_length / 2), i + 1 + (raster_line_length / 2)],
                            linestyle="solid",
                            linewidth=raster_line_width,
                            color="black")
        plt.tight_layout()
        plt.savefig(save_path + '/rastergram/' + filename + '.png')
        plt.close(fig)


        ###### LEARNING AND PREDICTION PROCESS ######
        plt.rcParams["font.size"] = 14
        if not os.path.isdir(save_path + '/RC'):
            os.mkdir(save_path + '/RC')
        num_read_nodes = numneu
        read_cols = ['T_0 [ms]']
        for i in range(num_read_nodes):
            read_cols.append('V_{} [mV]'.format(i))
            read_cols.append('I_syn_{} [uA]'.format(i))
            read_cols.append('I_AMPA_{} [uA]'.format(i))
            read_cols.append('I_NMDA_{} [uA]'.format(i))
        read_cols.append('Iext_{} [uA]'.format(0))
        print(read_cols)

        df = pd.read_csv(save_path + '/' + filename + '.csv', usecols=read_cols, skiprows=1)[read_cols]
        train_ratio = 0.5
        border = int(len(df.values[:, 0]) * train_ratio)

        # time
        times = df.values[:, 0].reshape((len(df.values[:, 0]), 1))
        times_bef = df.values[:border, 0].reshape((len(df.values[:border, 0]), 1))
        times_af = df.values[border:, 0].reshape((len(df.values[border:, 0]), 1))

        # Iext
        index_tmp = []
        index_tmp.append(int(4 * num_read_nodes + 1))
        input = df.values[:, index_tmp].reshape((len(df.values[:, index_tmp]), len(index_tmp)))
        target = input[:border]

        # V
        index_tmp = []
        for i in range(num_read_nodes):
            index_tmp.append(i * 4 + 1)
        output = df.values[:, index_tmp].reshape((len(df.values[:, index_tmp]), len(index_tmp)))
        output_train = df.values[:border, index_tmp].reshape((len(df.values[:border, index_tmp]), len(index_tmp)))
        output_predict = df.values[border:, index_tmp].reshape((len(df.values[border:, index_tmp]), len(index_tmp)))

        # Isyn, Iampa, Inmda
        index_tmp = []
        for i in range(num_read_nodes):
            index_tmp.append(i * 4 + 2)
        Isyn = df.values[:, index_tmp].reshape((len(df.values[:, index_tmp]), len(index_tmp)))
        index_tmp = []
        for i in range(num_read_nodes):
            index_tmp.append(i * 4 + 3)
        IAMPA = df.values[:, index_tmp].reshape((len(df.values[:, index_tmp]), len(index_tmp)))
        index_tmp = []
        for i in range(num_read_nodes):
            index_tmp.append(i * 4 + 4)
        INMDA = df.values[:, index_tmp].reshape((len(df.values[:, index_tmp]), len(index_tmp)))

        lsm = LSM()
        lsm.train(output_train, target)
        predict_res = (output_predict @ lsm.output_w).T

        # layout
        fig = plt.figure(figsize=(20, 15))
        fig.suptitle(filename)
        fig.subplots_adjust(left=0.075, bottom=0.05, right=0.95, top=0.95, wspace=0.15, hspace=0.15)
        gs_master = GridSpec(nrows=num_read_nodes + 1, ncols=2)
        gs_rc = GridSpecFromSubplotSpec(nrows=1, ncols=2, subplot_spec=gs_master[0, 0:2])
        ax_rc = fig.add_subplot(gs_rc[:, :])
        gs_status = GridSpecFromSubplotSpec(nrows=num_read_nodes, ncols=2, subplot_spec=gs_master[1:, :], hspace=0.4,
                                            wspace=0.15)
        ax_status_v = []
        ax_status_i = []

        # Firing pattern of individual neurons
        for i in range(num_read_nodes):
            ax_status_v.append(fig.add_subplot(gs_status[i, 0]))
            ax_status_i.append(fig.add_subplot(gs_status[i, 1]))
            if i == 0:
                ax_rc.plot(times_bef, output_train[:, i], label="train_output_n{}".format(i))
                ax_rc.plot(times, input[:, 0], label="input(target)_Iext0")
                ax_rc.plot(times_af, predict_res[0], label="after training")
            ax_status_v[i].plot(times, output[:, i], label="output_n{}".format(i))
            ax_status_i[i].plot(times, Isyn[:, i], label="Isyn")
            ax_status_i[i].plot(times, IAMPA[:, i], label="IAMPA")
            ax_status_i[i].plot(times, INMDA[:, i], label="INMDA")
            ax_status_v[i].legend()
            ax_status_i[i].legend()

        print(times.shape)
        print(output_train.shape)
        print(target.shape)
        print(lsm.output_w.shape)
        print((output_train @ lsm.output_w).shape)
        print(output_predict.shape)
        print("W:{}".format(lsm.output_w))
        #plt.show()
        plt.savefig(save_path + '/RC/' + filename + '.png')
        plt.close(fig)
コード例 #19
0
ファイル: homework2.py プロジェクト: Kaleidophon/tipsy-tapir
def create_latent_semantic_model_runfiles():
    global rankings

    # LSI
    start = time.time()
    lsi = LSM('LSI', index)
    lsi.create_model()
    end = time.time()
    print("LSI model creation took {:.2f} seconds.".format(end - start))

    start = time.time()
    lsi.create_similarity_index()
    end = time.time()
    print("LSI similarity index creation took {:.2f} seconds.".format(end -
                                                                      start))

    start = time.time()
    lsi_reranking = lsm_reranking(ranked_queries=rankings['tfidf'],
                                  LSM_model=lsi)
    end = time.time()
    print("LSI reranking took {:.2f} seconds.".format(end - start))

    start = time.time()
    run_out_path = '{}.run'.format('LSI')
    with open('./lexical_results/{}'.format(run_out_path), 'w') as f_out:
        write_run(model_name='LSI',
                  data=lsi_reranking,
                  out_f=f_out,
                  max_objects_per_query=1000)
    end = time.time()
    print("LSI run file creation {:.2f} seconds.".format(end - start))

    # LDA
    start = time.time()
    lda = LSM('LDA', index)
    lda.create_model()
    end = time.time()
    print("LDA model creation took {:.2f} seconds.".format(end - start))

    start = time.time()
    lda.create_similarity_index()
    end = time.time()
    print("LDA similarity index creation took {:.2f} seconds.".format(end -
                                                                      start))

    start = time.time()
    lda_reranking = lsm_reranking(ranked_queries=rankings['tfidf'],
                                  LSM_model=lda)
    end = time.time()
    print("LDA reranking took {:.2f} seconds.".format(end - start))

    start = time.time()
    run_out_path = '{}.run'.format('LDA')
    with open('./lexical_results/{}'.format(run_out_path), 'w') as f_out:
        write_run(model_name='LDA',
                  data=lda_reranking,
                  out_f=f_out,
                  max_objects_per_query=1000)
    end = time.time()
    print("LDA run file creation {:.2f} seconds.".format(end - start))
コード例 #20
0
ファイル: db.py プロジェクト: sorrat/tiny-url
 def __init__(self):
     self.path = settings.DB_PATH
     self.db = LSM(self.path)