コード例 #1
0
 def test_full_well(self):
     self.seg.full_well = self.full_well
     times = np.arange(0, 2000, self.seg.exptime)
     for i, time in enumerate(times):
         image = imutils.unbias_and_trim(self.seg.image,
                                         self.amp_geom.serial_overscan,
                                         self.amp_geom.imaging)
         Ne_mean = imutils.mean(image) * self.seg.gain
         self.assertTrue(Ne_mean <= self.full_well)
         self.seg.expose_flat(intensity=self.intensity)
コード例 #2
0
 def test_expose_flat(self):
     times = np.arange(0, 1000, self.seg.exptime)
     for i, time in enumerate(times):
         image = imutils.unbias_and_trim(self.seg.image,
                                         self.amp_geom.serial_overscan,
                                         self.amp_geom.imaging)
         image_mean = imutils.mean(image)
         illum = i * self.intensity * self.seg.exptime / self.seg.gain
         if i != 0:
             self.assertTrue((illum - image_mean) / illum < 3e-4)
         self.seg.expose_flat(intensity=self.intensity)
コード例 #3
0
 def test_unbias_and_trim(self):
     ccd = MaskedCCD(self.image_file)
     for amp in ccd:
         image = imutils.unbias_and_trim(ccd[amp],
                                         self.amp_geom.serial_overscan,
                                         self.amp_geom.imaging)
         imarr = image.getImage().getArray()
         self.assertTrue(max(np.abs(imarr.flat)) < 1e-6)
         #
         # Test of corresponding MaskedCCD method.
         #
         image = ccd.unbiased_and_trimmed_image(amp)
         imarr = image.getImage().getArray()
         self.assertTrue(max(np.abs(imarr.flat)) < 1e-6)
コード例 #4
0
 def test_stack(self):
     ccd = MaskedCCD(self.image_file)
     overscan = makeAmplifierGeometry(self.image_file)
     for method in ['mean', 'row', 'func']:
         corrected = []
         for image in ccd.values():
             corrected.append(
                 imutils.unbias_and_trim(image,
                                         overscan.serial_overscan,
                                         bias_method=method,
                                         **self.kwargs).getImage())
         stacked = imutils.stack(corrected)
         imarr = stacked.getArray()
         if method == 'mean':
             self.assertTrue(max(np.abs(imarr.flat)) < 2)
         else:
             self.assertTrue(max(np.abs(imarr.flat)) < 1e-6)
コード例 #5
0
ファイル: dark_pix.py プロジェクト: zguangyu/eotest
    def dark_pix(self, infile, hdu):
        """ List pixels with counts less than a specified percentage of the
            median flux, for the specified amps. """

        #read in and trim image area
        im = imutils.unbias_and_trim(afwImage.ImageF(infile, hdu))

        #find median of image
        median = afwMath.makeStatistics(im, afwMath.MEDIAN).getValue()
        thresh = median*self.percent/100.0

        #find pixels less than _ percent of median
        imarr = im.getArray()
        darkpix = np.where(imarr <= thresh)

        #turn x,y into a list of pixel coords
        pixlist = np.transpose(darkpix)

        return len(pixlist), pixlist
コード例 #6
0
def unbias_amp(img,
               serial_oscan,
               bias_type=None,
               superbias_im=None,
               region=None,
               bias_type_col=None,
               parallel_oscan=None):
    """Unbias the data from a particular amp

    Paramters
    ---------
    img : `ImageF`
        The image
    serial_oscan : `Box2I`
        Serial overscan bounding box
    bias_type : `str` or `None`
        Method of unbiasing to applly
    superbias_im : `ImageF`
        Optional superbias frame to subtract off
    region : `Box2I`
        Return to return data for

    Returns
    -------
    iamge : `ImageF`
        The unbiased image
    """
    if bias_type is not None:
        image = imutil.unbias_and_trim(img,
                                       serial_oscan,
                                       bias_method=bias_type,
                                       bias_frame=superbias_im,
                                       imaging=region,
                                       bias_method_col=bias_type_col,
                                       overscan_col=parallel_oscan)
    else:
        image = img
        if superbias_im is not None:
            image -= superbias_im
        if region is not None:
            image = imutil.trim(image, region)

    return image
コード例 #7
0
 def test_unbias_and_trim(self):
     ccd = MaskedCCD(self.image_file)
     overscan = makeAmplifierGeometry(self.image_file)
     for amp in ccd:
         for method in ['mean', 'row', 'func', 'spline']:
             image = imutils.unbias_and_trim(ccd[amp],
                                             overscan.serial_overscan,
                                             bias_method=method,
                                             **self.kwargs)
             imarr = image.getImage().getArray()
             if method == 'mean':
                 self.assertTrue(max(np.abs(imarr.flat)) < 2)
             else:
                 self.assertTrue(max(np.abs(imarr.flat)) < 1e-6)
                 #
                 # Test of corresponding MaskedCCD method.
                 #
                 image = ccd.unbiased_and_trimmed_image(
                     amp, overscan.serial_overscan, **self.kwargs)
                 imarr = image.getImage().getArray()
                 self.assertTrue(max(np.abs(imarr.flat)) < 1e-6)
コード例 #8
0
    def run(self, sensor_id, pre_flat_darks, flat, post_flat_darks, mask_files,
            gains):
        darks = list(pre_flat_darks) + list(post_flat_darks)
        imutils.check_temperatures(darks,
                                   self.config.temp_set_point_tol,
                                   setpoint=self.config.temp_set_point,
                                   warn_only=True)
        # Check that pre-flat dark frames all have the same exposure time
        md = imutils.Metadata(pre_flat_darks[0], 1)
        exptime = md.get('EXPTIME')
        for item in pre_flat_darks[1:]:
            md = imutils.Metadata(item, 1)
            if exptime != md.get('EXPTIME'):
                raise RuntimeError("Exposure times of pre-flat darks differ.")

        # Make a median image of the preflat darks
        median_images = {}
        for amp in imutils.allAmps(darks[0]):
            median_images[amp] = imutils.fits_median(pre_flat_darks,
                                                     imutils.dm_hdu(amp))
        medfile = os.path.join(self.config.output_dir,
                               '%s_persistence_dark_median.fits' % sensor_id)
        imutils.writeFits(median_images, medfile, darks[0])
        ccd = MaskedCCD(medfile, mask_files=mask_files)

        # Define the sub-region for assessing the deferred charge.
        # This is the same bounding box for all segments, so use amp=1.
        image = ccd.unbiased_and_trimmed_image(1)
        xllc = ((image.getWidth() - self.config.region_size) / 2. -
                self.config.region_x_offset)
        yllc = ((image.getHeight() - self.config.region_size) / 2. -
                self.config.region_y_offset)
        imaging_reg = afwGeom.Box2I(
            afwGeom.Point2I(int(xllc), int(yllc)),
            afwGeom.Extent2I(self.config.region_size, self.config.region_size))
        overscan = ccd.amp_geom.serial_overscan
        # Compute reference dark current for each segment.
        dc_ref = {}
        for amp in ccd:
            mi = imutils.unbias_and_trim(ccd[amp], overscan, imaging_reg)
            dc_ref[amp] = afwMath.makeStatistics(mi, afwMath.MEDIAN,
                                                 ccd.stat_ctrl).getValue()
            dc_ref[amp] *= gains[amp] / exptime

        # Extract reference time for computing the time dependence
        # of the deferred charge as the observation time + exposure time
        # from the saturated flat.
        tref = readout_time(flat)

        # Loop over post-flat darks, compute median e-/pixel in
        # subregion, subtract dc_ref*exptime, persist, and report the
        # deferred charge vs time (using MJD-OBS + EXPTIME) for each amp.
        deferred_charges = []
        times = []
        for dark in post_flat_darks:
            ccd = MaskedCCD(dark, mask_files=mask_files)
            dt = readout_time(dark) - tref
            times.append(dt.sec)
            exptime = ccd.md.get('EXPTIME')
            charge = {}
            for amp in ccd:
                mi = imutils.unbias_and_trim(ccd[amp], overscan, imaging_reg)
                estimators = afwMath.MEDIAN | afwMath.STDEV
                stats = afwMath.makeStatistics(mi, estimators, ccd.stat_ctrl)
                value = (stats.getValue(afwMath.MEDIAN) * gains[amp] -
                         dc_ref[amp] * exptime)
                stdev = (stats.getValue(afwMath.STDEV) * gains[amp] -
                         dc_ref[amp] * exptime)
                charge[amp] = (value, stdev)
            deferred_charges.append(charge)

        if self.config.verbose:
            for amp in ccd:
                self.log.info("amp: %i" % amp)
                for i, time in enumerate(times):
                    self.log.info("%.1f  %e  %e" %
                                  (time, deferred_charges[i][amp][0],
                                   deferred_charges[i][amp][1]))

        outfile = os.path.join(self.config.output_dir,
                               '%s_persistence.fits' % sensor_id)
        self.write(times, deferred_charges, outfile, clobber=True)
コード例 #9
0
ファイル: darkCurrentTask.py プロジェクト: zguangyu/eotest
    def run(self, sensor_id, dark_files, mask_files, gains, bias_frame=None):
        imutils.check_temperatures(dark_files,
                                   self.config.temp_set_point_tol,
                                   setpoint=self.config.temp_set_point,
                                   warn_only=True)
        median_images = {}
        md = imutils.Metadata(dark_files[0], 1)
        for amp in imutils.allAmps(dark_files[0]):
            median_images[amp] = imutils.fits_median(dark_files,
                                                     imutils.dm_hdu(amp))
        medfile = os.path.join(self.config.output_dir,
                               '%s_median_dark_current.fits' % sensor_id)
        imutils.writeFits(median_images, medfile, dark_files[0])

        ccd = MaskedCCD(medfile, mask_files=mask_files, bias_frame=bias_frame)

        dark95s = {}
        exptime = md.get('EXPTIME')
        if self.config.verbose:
            self.log.info("Amp        95 percentile    median")
        dark_curr_pixels = []
        dark_curr_pixels_per_amp = {}
        for amp in ccd:
            imaging_region = ccd.amp_geom.imaging
            overscan = ccd.amp_geom.serial_overscan
            image = imutils.unbias_and_trim(ccd[amp].getImage(), overscan,
                                            imaging_region)
            mask = imutils.trim(ccd[amp].getMask(), imaging_region)
            imarr = image.getArray()
            mskarr = mask.getArray()
            pixels = imarr.reshape(1, imarr.shape[0] * imarr.shape[1])[0]
            masked = mskarr.reshape(1, mskarr.shape[0] * mskarr.shape[1])[0]
            unmasked = [
                pixels[i] for i in range(len(pixels)) if masked[i] == 0
            ]
            unmasked.sort()
            unmasked = np.array(unmasked) * gains[amp] / exptime
            dark_curr_pixels_per_amp[amp] = unmasked
            dark_curr_pixels.extend(unmasked)
            try:
                dark95s[amp] = unmasked[int(len(unmasked) * 0.95)]
                median = unmasked[len(unmasked) / 2]
            except IndexError as eobj:
                print str(eobj)
                dark95s[amp] = -1.
                median = -1.
            if self.config.verbose:
                self.log.info("%2i         %.2e         %.2e" %
                              (amp, dark95s[amp], median))
        #
        # Compute 95th percentile dark current for CCD as a whole.
        #
        dark_curr_pixels = sorted(dark_curr_pixels)
        darkcurr95 = dark_curr_pixels[int(len(dark_curr_pixels) * 0.95)]
        dark95mean = np.mean(dark95s.values())
        if self.config.verbose:
            #self.log.info("CCD: mean 95 percentile value = %s" % dark95mean)
            self.log.info("CCD-wide 95 percentile value = %s" % darkcurr95)
        #
        # Update header of dark current median image file with dark
        # files used and dark95 values, and write dark95 values to the
        # eotest results file.
        #
        results_file = self.config.eotest_results_file
        if results_file is None:
            results_file = os.path.join(self.config.output_dir,
                                        '%s_eotest_results.fits' % sensor_id)
        results = EOTestResults(results_file, namps=len(ccd))
        output = fits.open(medfile)
        for i, dark in enumerate(dark_files):
            output[0].header['DARK%02i' % i] = os.path.basename(dark)
        # Write overall dark current 95th percentile
        results.output['AMPLIFIER_RESULTS'].header['DARK95'] = darkcurr95
        for amp in ccd:
            output[0].header['DARK95%s' %
                             imutils.channelIds[amp]] = dark95s[amp]
            results.add_seg_result(amp, 'DARK_CURRENT_95', dark95s[amp])
        fitsWriteto(output, medfile, clobber=True, checksum=True)
        results.write(clobber=True)
        return dark_curr_pixels_per_amp, dark95s