コード例 #1
0
def main(sensor_id, infile, output_dir='./', cti=None, do_trapping=False, 
         do_electronics=False):

    processed_file = os.path.join(output_dir, 
                                  '{0}_processed.fits'.format(sensor_id))
    corrected_file = os.path.join(output_dir, 
                                  '{0}_corrected.fits'.format(sensor_id))

    ## CTI parameters
    if cti is None:
        do_cti = False
        cti = 0.0
    else:
        do_cti = True
    cti_dict = {amp : cti for amp in range(1, 17)}

    ## Trapping parameters
    if do_trapping:
#        traps = [LinearTrap(4.0, 0.4, 1, 0.08),
#                 LogisticTrap(1000.0, 0.4, 1, 60000., 0.0002)]
        traps = [LinearTrap(4.0, 0.4, 1, 0.08),
                 LogisticTrap(40.0, 0.4, 1, 17500., 0.001)]
    else:
        traps = None
    traps_dict = {amp : traps for amp in range(1, 17)}

    ## Electronics parameters
    if do_electronics:
        scale = 0.0002
        decay_time = 2.5
        output_amps = {amp : FloatingOutputAmplifier(1.0, scale, decay_time) for amp in range(1, 17)}
    else:
        output_amps = {amp : BaseOutputAmplifier(1.0) for amp in range(1, 17)}

    ## Process infile
    imsim = ImageSimulator.from_image_fits(infile, output_amps, 
                                           cti=cti_dict, traps=traps_dict)
    imarr_results = imsim.image_readout(infile, outfile=processed_file)

    ccd = MaskedCCD(processed_file)
    hdulist = fits.HDUList()
    with fits.open(infile) as template:
        hdulist.append(template[0])
        hdulist[0].header['ORIGFILE'] = hdulist[0].header['FILENAME']
        hdulist[0].header['FILENAME'] = corrected_file

        for amp in range(1, 17):

            imarr = ccd.bias_subtracted_image(amp).getImage().getArray()

            ## Electronics Correction
            if do_electronics:
                E = electronics_operator(imarr, scale, decay_time, num_previous_pixels=15)
                corrected_imarr = imarr - E
            else:
                corrected_imarr = imarr

            ## Trap Correction
            if do_trapping:
                T = trap_operator(imarr, *traps)
                corrected_imarr = corrected_imarr - (1-cti)*T
            else:
                pass

            ## CTI Correction
            if do_cti:
                Dinv_cti = cti_inverse_operator(cti, imarr.shape[1])
                for i in range(imarr.shape[0]):

                    corrected_imarr[i, :] = Dinv_cti*corrected_imarr[i, :]
            else:
                pass

            hdulist.append(fits.ImageHDU(data=corrected_imarr,
                                     header=template[amp].header))
            with warnings.catch_warnings():
                for warning in (UserWarning, AstropyWarning,
                                AstropyUserWarning):
                    warnings.filterwarnings('ignore', category=warning,
                                            append=True)
                fitsWriteto(hdulist, corrected_file, overwrite=True)
コード例 #2
0
def main(sensor_id,
         infile,
         main_dir,
         gain_file=None,
         output_dir='./',
         no_bias=False):

    ## Get existing parameter results
    param_file = join(main_dir, '{0}_parameter_results.fits'.format(sensor_id))
    param_results = OverscanParameterResults.from_fits(param_file)
    cti_results = param_results.cti_results
    drift_scales = param_results.drift_scales
    decay_times = param_results.decay_times
    trap_files = [
        join(main_dir, '{0}_amp{1}_trap.pkl'.format(sensor_id, i))
        for i in range(1, 17)
    ]

    ## Get gains
    if gain_file is not None:
        with open(gain_file, 'rb') as f:
            gain_results = pickle.load(f)
            gains = gain_results.get_amp_gains(sensor_id)
    else:
        gains = {i: 1.0 for i in range(1, 17)}

    ## Output filename
    base = splitext(os.path.basename(infile))[0]
    outfile = join(output_dir, '{0}_corrected.fits'.format(base))

    ## Include bias frame for calibration
    if no_bias:
        bias_frame = None
    else:
        bias_frame = join(main_dir, '{0}_superbias.fits'.format(sensor_id))
    ccd = MaskedCCD(infile, bias_frame=bias_frame)

    hdulist = fits.HDUList()
    with fits.open(infile) as template:
        hdulist.append(template[0])

        ## Perform correction amp by amp
        for amp in range(1, 17):

            imarr = ccd.bias_subtracted_image(
                amp).getImage().getArray() * gains[amp]

            ## Electronics Correction
            if drift_scales[amp] > 0.:
                Linv = electronics_inverse_operator(imarr,
                                                    drift_scales[amp],
                                                    decay_times[amp],
                                                    num_previous_pixels=15)
                corrected_imarr = imarr - Linv
            else:
                corrected_imarr = imarr

            ## Trap Correction
            spltrap = pickle.load(open(trap_files[amp], 'rb'))
            Tinv = trap_inverse_operator(corrected_imarr, spltrap)
            corrected_imarr = corrected_imarr - (1 - cti_results[amp]) * Tinv

            ## Reassemble HDUList
            hdulist.append(
                fits.ImageHDU(data=corrected_imarr / gains[amp],
                              header=template[amp].header))
            with warnings.catch_warnings():
                for warning in (UserWarning, AstropyWarning,
                                AstropyUserWarning):
                    warnings.filterwarnings('ignore',
                                            category=warning,
                                            append=True)
                fitsWriteto(hdulist, outfile, overwrite=True)