コード例 #1
0
    def runQuantum(self, butlerQC, inputRefs, outputRefs):
        inputs = butlerQC.get(inputRefs)
        expId, expBits = butlerQC.quantum.dataId.pack("visit_detector",
                                                      returnMaxBits=True)
        inputs['exposureIdInfo'] = ExposureIdInfo(expId, expBits)

        if self.config.doAstrometry:
            refObjLoader = ReferenceObjectLoader(dataIds=[ref.datasetRef.dataId
                                                          for ref in inputRefs.astromRefCat],
                                                 refCats=inputs.pop('astromRefCat'),
                                                 config=self.config.astromRefObjLoader, log=self.log)
            self.pixelMargin = refObjLoader.config.pixelMargin
            self.astrometry.setRefObjLoader(refObjLoader)

        if self.config.doPhotoCal:
            photoRefObjLoader = ReferenceObjectLoader(dataIds=[ref.datasetRef.dataId
                                                      for ref in inputRefs.photoRefCat],
                                                      refCats=inputs.pop('photoRefCat'),
                                                      config=self.config.photoRefObjLoader,
                                                      log=self.log)
            self.pixelMargin = photoRefObjLoader.config.pixelMargin
            self.photoCal.match.setRefObjLoader(photoRefObjLoader)

        outputs = self.run(**inputs)

        if self.config.doWriteMatches and self.config.doAstrometry:
            normalizedMatches = afwTable.packMatches(outputs.astromMatches)
            normalizedMatches.table.setMetadata(outputs.matchMeta)
            if self.config.doWriteMatchesDenormalized:
                denormMatches = denormalizeMatches(outputs.astromMatches, outputs.matchMeta)
                outputs.matchesDenormalized = denormMatches
            outputs.matches = normalizedMatches
        butlerQC.put(outputs, outputRefs)
コード例 #2
0
    def adaptArgsAndRun(self, inputData, inputDataIds, outputDataIds, butler):
        expId, expBits = butler.registry.packDataId("visit_detector",
                                                    inputDataIds['exposure'],
                                                    returnMaxBits=True)
        inputData['exposureIdInfo'] = ExposureIdInfo(expId, expBits)

        if self.config.doAstrometry:
            refObjLoader = ReferenceObjectLoader(dataIds=inputDataIds['astromRefCat'],
                                                 butler=butler,
                                                 config=self.config.astromRefObjLoader,
                                                 log=self.log)
            self.pixelMargin = refObjLoader.config.pixelMargin
            self.astrometry.setRefObjLoader(refObjLoader)

        if self.config.doPhotoCal:
            photoRefObjLoader = ReferenceObjectLoader(inputDataIds['photoRefCat'],
                                                      butler,
                                                      self.config.photoRefObjLoader,
                                                      self.log)
            self.pixelMargin = photoRefObjLoader.config.pixelMargin
            self.photoCal.match.setRefObjLoader(photoRefObjLoader)

        results = self.run(**inputData)

        if self.config.doWriteMatches:
            normalizedMatches = afwTable.packMatches(results.astromMatches)
            normalizedMatches.table.setMetadata(results.matchMeta)
            if self.config.doWriteMatchesDenormalized:
                denormMatches = denormalizeMatches(results.astromMatches, results.matchMeta)
                results.matchesDenormalized = denormMatches
            results.matches = normalizedMatches
        return results
コード例 #3
0
 def runQuantum(self, butlerQC, inputRefs, outputRefs):
     inputs = butlerQC.get(inputRefs)
     if 'exposureIdInfo' not in inputs.keys():
         exposureIdInfo = ExposureIdInfo()
         exposureIdInfo.expId, exposureIdInfo.expBits = butlerQC.quantum.dataId.pack(
             "visit_detector", returnMaxBits=True)
         inputs['exposureIdInfo'] = exposureIdInfo
     outputs = self.run(**inputs)
     butlerQC.put(outputs, outputRefs)
コード例 #4
0
ファイル: multiBandUtils.py プロジェクト: youtsumi/pipe_tasks
    def makeIdFactory(self, dataRef):
        """Return an IdFactory for setting the detection identifiers

        The actual parameters used in the IdFactory are provided by
        the butler (through the provided data reference.
        """
        info = ExposureIdInfo(
            int(dataRef.get(self.config.coaddName + datasetName)),
            dataRef.get(self.config.coaddName + datasetName + "_bits"))
        return info.makeSourceIdFactory()
コード例 #5
0
ファイル: multiBandUtils.py プロジェクト: lsst/pipe_tasks
    def makeIdFactory(self, dataRef):
        """Return an IdFactory for setting the detection identifiers

        The actual parameters used in the IdFactory are provided by
        the butler (through the provided data reference.
        """
        expId = getGen3CoaddExposureId(dataRef, coaddName=self.config.coaddName, includeBand=includeBand,
                                       log=self.log)
        info = ExposureIdInfo(expId, dataRef.get(self.config.coaddName + datasetName + "_bits"))
        return info.makeSourceIdFactory()
コード例 #6
0
    def adaptArgsAndRun(self, inputData, inputDataIds, outputDataIds, butler):
        if 'exposureIdInfo' not in inputData.keys():
            packer = butler.registry.makeDataIdPacker("visit_detector",
                                                      inputDataIds['exposure'])
            exposureIdInfo = ExposureIdInfo()
            exposureIdInfo.expId = packer.pack(inputDataIds['exposure'])
            exposureIdInfo.expBits = packer.maxBits
            inputData['exposureIdInfo'] = exposureIdInfo

        return super().adaptArgsAndRun(inputData, inputDataIds, outputDataIds,
                                       butler)
コード例 #7
0
    def runQuantum(self, butlerQC, inputRefs, outputRefs):
        inputs = butlerQC.get(inputRefs)
        if 'exposureIdInfo' not in inputs.keys():
            expId, expBits = butlerQC.quantum.dataId.pack("visit_detector",
                                                          returnMaxBits=True)
            inputs['exposureIdInfo'] = ExposureIdInfo(expId, expBits)

        if inputs["wcs"] is None:
            inputs["wcs"] = inputs["image"].getWcs()
        if inputs["photoCalib"] is None:
            inputs["photoCalib"] = inputs["image"].getPhotoCalib()

        outputs = self.run(**inputs)
        butlerQC.put(outputs, outputRefs)
コード例 #8
0
    def adaptArgsAndRun(self, inputData, inputDataIds, outputDataIds, butler):
        if 'exposureIdInfo' not in inputData.keys():
            packer = butler.registry.makeDataIdPacker("VisitDetector",
                                                      inputDataIds['exposure'])
            exposureIdInfo = ExposureIdInfo()
            exposureIdInfo.expId = packer.pack(inputDataIds['exposure'])
            exposureIdInfo.expBits = packer.maxBits
            inputData['exposureIdInfo'] = exposureIdInfo

        if inputData["wcs"] is None:
            inputData["wcs"] = inputData["image"].getWcs()
        if inputData["photoCalib"] is None:
            inputData["photoCalib"] = inputData["image"].getCalib()

        return self.run(**inputData)
コード例 #9
0
    def run(self, exposure, exposureIdInfo=None):
        
        if not exposure.hasPsf():
            self.installSimplePsf.run(exposure=exposure)

        if exposureIdInfo is None:
            exposureIdInfo = ExposureIdInfo()

        try:
            self.repair.run(exposure=exposure, keepCRs=True)
        except LengthError:
            self.log.info("Skipping cosmic ray detection: Too many CR pixels (max %0.f)" % self.repair.cosmicray.nCrPixelMax)

        sourceIdFactory = exposureIdInfo.makeSourceIdFactory()
        table = SourceTable.make(self.schema, sourceIdFactory)
        table.setMetadata(self.algMetadata)

        filtered = maximum_filter(exposure.getImage().array, size=self.config.maximumFilterBoxWidth)
        detected = (filtered == exposure.getImage().getArray()) & (filtered > self.config.thresholdValue)

        detectedImage = afwImage.ImageF(detected.astype(np.float32))
        fps = afwDetect.FootprintSet(detectedImage, afwDetect.Threshold(0.5))
        fp_ctrl = afwDetect.FootprintControl(True, True)
        fps = afwDetect.FootprintSet(fps, self.config.footprintGrowValue, fp_ctrl)

        sources = afwTable.SourceCatalog(table)
        fps.makeSources(sources)

        self.measurement.run(measCat=sources, exposure=exposure, exposureId=exposureIdInfo.expId)
        self.catalogCalculation.run(sources)

        ## Add metadata to source catalog
        md = exposure.getMetadata()
        sources.getMetadata().add("BOTXCAM", md["BOTXCAM"])
        sources.getMetadata().add("BOTYCAM", md["BOTYCAM"])

        self.display("measure", exposure=exposure, sourceCat=sources)

        return pipeBase.Struct(sourceCat=sources) 
コード例 #10
0
ファイル: detectAndMeasure.py プロジェクト: lsst/ip_diffim
    def makeIdFactory(expId, expBits):
        """Create IdFactory instance for unique 64 bit diaSource id-s.

        Parameters
        ----------
        expId : `int`
            Exposure id.

        expBits: `int`
            Number of used bits in ``expId``.

        Notes
        -----
        The diasource id-s consists of the ``expId`` stored fixed in the highest value
        ``expBits`` of the 64-bit integer plus (bitwise or) a generated sequence number in the
        low value end of the integer.

        Returns
        -------
        idFactory: `lsst.afw.table.IdFactory`
        """
        return ExposureIdInfo(expId, expBits).makeSourceIdFactory()
コード例 #11
0
    def makeIdFactory(self, dataRef, exposureId):
        """Create an object that generates globally unique source IDs.

        Source IDs are created based on a per-CCD ID and the ID of the CCD
        itself.

        Parameters
        ----------
        dataRef : `lsst.daf.persistence.ButlerDataRef`
            Butler data reference. The "CoaddId_bits" and "CoaddId" datasets
            are accessed. The data ID must have tract and patch keys.
        """
        # With the default configuration, this IdFactory doesn't do anything,
        # because the IDs it generates are immediately overwritten by the ID
        # from the reference catalog (since that's in
        # config.measurement.copyColumns).  But we create one here anyway, to
        # allow us to revert back to the old behavior of generating new forced
        # source IDs, just by renaming the ID in config.copyColumns to
        # "object_id".
        exposureIdInfo = ExposureIdInfo(
            exposureId, dataRef.get(self.config.coaddName + "CoaddId_bits"))
        return exposureIdInfo.makeSourceIdFactory()
コード例 #12
0
    def run(self, exposure, exposureIdInfo=None, background=None):
        """!Characterize a science image

        Peforms the following operations:
        - Iterate the following config.psfIterations times, or once if config.doMeasurePsf false:
            - detect and measure sources and estimate PSF (see detectMeasureAndEstimatePsf for details)
        - interpolate over cosmic rays
        - perform final measurement

        @param[in,out] exposure  exposure to characterize (an lsst.afw.image.ExposureF or similar).
            The following changes are made:
            - update or set psf
            - set apCorrMap
            - update detection and cosmic ray mask planes
            - subtract background and interpolate over cosmic rays
        @param[in] exposureIdInfo  ID info for exposure (an lsst.obs.base.ExposureIdInfo).
            If not provided, returned SourceCatalog IDs will not be globally unique.
        @param[in,out] background  initial model of background already subtracted from exposure
            (an lsst.afw.math.BackgroundList). May be None if no background has been subtracted,
            which is typical for image characterization.

        @return pipe_base Struct containing these fields, all from the final iteration
        of detectMeasureAndEstimatePsf:
        - exposure: characterized exposure; image is repaired by interpolating over cosmic rays,
            mask is updated accordingly, and the PSF model is set
        - sourceCat: detected sources (an lsst.afw.table.SourceCatalog)
        - background: model of background subtracted from exposure (an lsst.afw.math.BackgroundList)
        - psfCellSet: spatial cells of PSF candidates (an lsst.afw.math.SpatialCellSet)
        """
        self._frame = self._initialFrame  # reset debug display frame

        if not self.config.doMeasurePsf and not exposure.hasPsf():
            self.log.warn(
                "Source catalog detected and measured with placeholder or default PSF"
            )
            self.installSimplePsf.run(exposure=exposure)

        if exposureIdInfo is None:
            exposureIdInfo = ExposureIdInfo()

        # subtract an initial estimate of background level
        background = self.background.run(exposure).background

        psfIterations = self.config.psfIterations if self.config.doMeasurePsf else 1
        for i in range(psfIterations):
            dmeRes = self.detectMeasureAndEstimatePsf(
                exposure=exposure,
                exposureIdInfo=exposureIdInfo,
                background=background,
            )

            psf = dmeRes.exposure.getPsf()
            psfSigma = psf.computeShape().getDeterminantRadius()
            psfDimensions = psf.computeImage().getDimensions()
            medBackground = np.median(dmeRes.background.getImage().getArray())
            self.log.info(
                "iter %s; PSF sigma=%0.2f, dimensions=%s; median background=%0.2f"
                % (i + 1, psfSigma, psfDimensions, medBackground))

        self.display("psf",
                     exposure=dmeRes.exposure,
                     sourceCat=dmeRes.sourceCat)

        # perform final repair with final PSF
        self.repair.run(exposure=dmeRes.exposure)
        self.display("repair",
                     exposure=dmeRes.exposure,
                     sourceCat=dmeRes.sourceCat)

        # perform final measurement with final PSF, including measuring and applying aperture correction,
        # if wanted
        self.measurement.run(measCat=dmeRes.sourceCat,
                             exposure=dmeRes.exposure,
                             exposureId=exposureIdInfo.expId)
        if self.config.doApCorr:
            apCorrMap = self.measureApCorr.run(
                exposure=dmeRes.exposure, catalog=dmeRes.sourceCat).apCorrMap
            dmeRes.exposure.getInfo().setApCorrMap(apCorrMap)
            self.applyApCorr.run(catalog=dmeRes.sourceCat,
                                 apCorrMap=exposure.getInfo().getApCorrMap())
        self.catalogCalculation.run(dmeRes.sourceCat)

        self.display("measure",
                     exposure=dmeRes.exposure,
                     sourceCat=dmeRes.sourceCat)

        return pipeBase.Struct(exposure=dmeRes.exposure,
                               sourceCat=dmeRes.sourceCat,
                               background=dmeRes.background,
                               psfCellSet=dmeRes.psfCellSet,
                               characterized=dmeRes.exposure,
                               backgroundModel=dmeRes.background)
コード例 #13
0
    def runQuantum(self, butlerQC, inputRefs, outputRefs):
        inputs = butlerQC.get(inputRefs)
        detectorId = inputs["exposure"].getInfo().getDetector().getId()

        if 'exposureIdInfo' not in inputs.keys():
            expId, expBits = butlerQC.quantum.dataId.pack("visit_detector",
                                                          returnMaxBits=True)
            inputs['exposureIdInfo'] = ExposureIdInfo(expId, expBits)

        expWcs = inputs["exposure"].getWcs()
        tractId = inputs["skyMap"].findTract(
            expWcs.pixelToSky(
                inputs["exposure"].getBBox().getCenter())).tract_id
        if not self.config.doApplyExternalGlobalSkyWcs and not self.config.doApplyExternalTractSkyWcs:
            inputs["wcs"] = expWcs
        elif self.config.doApplyExternalGlobalSkyWcs:
            externalSkyWcsCatalog = inputs["externalSkyWcsGlobalCatalog"]
            row = externalSkyWcsCatalog.find(detectorId)
            inputs["wcs"] = row.getWcs()
        elif self.config.doApplyExternalTractSkyWcs:
            externalSkyWcsCatalogList = inputs["externalSkyWcsTractCatalog"]
            externalSkyWcsCatalog = None
            for externalSkyWcsCatalogRef in externalSkyWcsCatalogList:
                if externalSkyWcsCatalogRef.dataId["tract"] == tractId:
                    externalSkyWcsCatalog = externalSkyWcsCatalogRef.get(
                        datasetType=self.config.connections.
                        externalSkyWcsTractCatalog)
                    break
            if externalSkyWcsCatalog is None:
                usedTract = externalSkyWcsCatalogList[-1].dataId["tract"]
                self.log.warn(
                    f"Warning, external SkyWcs for tract {tractId} not found. Using tract {usedTract} "
                    "instead.")
                externalSkyWcsCatalog = externalSkyWcsCatalogList[-1].get(
                    datasetType=self.config.connections.
                    externalSkyWcsTractCatalog)
            row = externalSkyWcsCatalog.find(detectorId)
            inputs["wcs"] = row.getWcs()

        if not self.config.doApplyExternalGlobalPhotoCalib and not self.config.doApplyExternalTractPhotoCalib:
            inputs["photoCalib"] = inputs["exposure"].getPhotoCalib()
        elif self.config.doApplyExternalGlobalPhotoCalib:
            externalPhotoCalibCatalog = inputs[
                "externalPhotoCalibGlobalCatalog"]
            row = externalPhotoCalibCatalog.find(detectorId)
            inputs["photoCalib"] = row.getPhotoCalib()
        elif self.config.doApplyExternalTractPhotoCalib:
            externalPhotoCalibCatalogList = inputs[
                "externalPhotoCalibTractCatalog"]
            externalPhotoCalibCatalog = None
            for externalPhotoCalibCatalogRef in externalPhotoCalibCatalogList:
                if externalPhotoCalibCatalogRef.dataId["tract"] == tractId:
                    externalPhotoCalibCatalog = externalPhotoCalibCatalogRef.get(
                        datasetType=self.config.connections.
                        externalPhotoCalibTractCatalog)
                    break
            if externalPhotoCalibCatalog is None:
                usedTract = externalPhotoCalibCatalogList[-1].dataId["tract"]
                self.log.warn(
                    f"Warning, external PhotoCalib for tract {tractId} not found. Using tract {usedTract} "
                    "instead.")
                externalPhotoCalibCatalog = externalPhotoCalibCatalogList[
                    -1].get(datasetType=self.config.connections.
                            externalPhotoCalibTractCatalog)
            row = externalPhotoCalibCatalog.find(detectorId)
            inputs["photoCalib"] = row.getPhotoCalib()

        outputs = self.run(**inputs)
        butlerQC.put(outputs, outputRefs)
コード例 #14
0
    def run(self, diaSources, tractPatchId, skymapBits):
        """Associate DiaSources into a collection of DiaObjects using a
        brute force matching algorithm.

        Reproducible is for the same input data is assured by ordering the
        DiaSource data by ccdVisit ordering.

        Parameters
        ----------
        diaSources : `pandas.DataFrame`
            DiaSources grouped by CcdVisitId to spatially associate into
            DiaObjects.
        tractPatchId : `int`
            Unique identifier for the tract patch.
        skymapBits : `int`
            Maximum number of bits used the ``tractPatchId`` integer
            identifier.

        Returns
        -------
        results : `lsst.pipe.base.Struct`
            Results struct with attributes:

            ``assocDiaSources``
                Table of DiaSources with updated values for the DiaObjects
                they are spatially associated to (`pandas.DataFrame`).
            ``diaObjects``
                Table of DiaObjects from matching DiaSources
                (`pandas.DataFrame`).

        """

        # Expected indexes include diaSourceId or meaningless range index
        # If meaningless range index, drop it, else keep it.
        doDropIndex = diaSources.index.names[0] is None
        diaSources.reset_index(inplace=True, drop=doDropIndex)

        # Sort by ccdVisit and diaSourceId to get a reproducible ordering for
        # the association.
        diaSources.set_index(["ccdVisitId", "diaSourceId"], inplace=True)

        # Empty lists to store matching and location data.
        diaObjectCat = []
        diaObjectCoords = []
        healPixIndices = []

        # Create Id factory and catalog for creating DiaObjectIds.
        exposureIdInfo = ExposureIdInfo(tractPatchId, skymapBits)
        idFactory = exposureIdInfo.makeSourceIdFactory()
        idCat = afwTable.SourceCatalog(
            afwTable.SourceTable.make(afwTable.SourceTable.makeMinimalSchema(),
                                      idFactory))

        for ccdVisit in diaSources.index.levels[0]:
            # For the first ccdVisit, just copy the DiaSource info into the
            # diaObject data to create the first set of Objects.
            ccdVisitSources = diaSources.loc[ccdVisit]
            if len(diaObjectCat) == 0:
                for diaSourceId, diaSrc in ccdVisitSources.iterrows():
                    self.addNewDiaObject(diaSrc,
                                         diaSources,
                                         ccdVisit,
                                         diaSourceId,
                                         diaObjectCat,
                                         idCat,
                                         diaObjectCoords,
                                         healPixIndices)
                continue
            # Temp list to store DiaObjects already used for this ccdVisit.
            usedMatchIndicies = []
            # Run over subsequent data.
            for diaSourceId, diaSrc in ccdVisitSources.iterrows():
                # Find matches.
                matchResult = self.findMatches(diaSrc["ra"],
                                               diaSrc["decl"],
                                               2*self.config.tolerance,
                                               healPixIndices,
                                               diaObjectCat)
                dists = matchResult.dists
                matches = matchResult.matches
                # Create a new DiaObject if no match found.
                if dists is None:
                    self.addNewDiaObject(diaSrc,
                                         diaSources,
                                         ccdVisit,
                                         diaSourceId,
                                         diaObjectCat,
                                         idCat,
                                         diaObjectCoords,
                                         healPixIndices)
                    continue
                # If matched, update catalogs and arrays.
                if np.min(dists) < np.deg2rad(self.config.tolerance/3600):
                    matchDistArg = np.argmin(dists)
                    matchIndex = matches[matchDistArg]
                    # Test to see if the DiaObject has been used.
                    if np.isin([matchIndex], usedMatchIndicies).sum() < 1:
                        self.updateCatalogs(matchIndex,
                                            diaSrc,
                                            diaSources,
                                            ccdVisit,
                                            diaSourceId,
                                            diaObjectCat,
                                            diaObjectCoords,
                                            healPixIndices)
                        usedMatchIndicies.append(matchIndex)
                    # If the matched DiaObject has already been used, create a
                    # new DiaObject for this DiaSource.
                    else:
                        self.addNewDiaObject(diaSrc,
                                             diaSources,
                                             ccdVisit,
                                             diaSourceId,
                                             diaObjectCat,
                                             idCat,
                                             diaObjectCoords,
                                             healPixIndices)
                # Create new DiaObject if no match found within the matching
                # tolerance.
                else:
                    self.addNewDiaObject(diaSrc,
                                         diaSources,
                                         ccdVisit,
                                         diaSourceId,
                                         diaObjectCat,
                                         idCat,
                                         diaObjectCoords,
                                         healPixIndices)

        # Drop indices before returning associated diaSource catalog.
        diaSources.reset_index(inplace=True)
        diaSources.set_index("diaSourceId", inplace=True, verify_integrity=True)

        objs = diaObjectCat if diaObjectCat else np.array([], dtype=[('diaObjectId', 'int64'),
                                                                     ('ra', 'float64'),
                                                                     ('decl', 'float64'),
                                                                     ('nDiaSources', 'int64')])
        diaObjects = pd.DataFrame(data=objs)

        if "diaObjectId" in diaObjects.columns:
            diaObjects.set_index("diaObjectId", inplace=True, verify_integrity=True)

        return pipeBase.Struct(
            assocDiaSources=diaSources,
            diaObjects=diaObjects)
コード例 #15
0
    def run(self, exposure, exposureIdInfo=None, background=None,
            icSourceCat=None):
        """!Calibrate an exposure (science image or coadd)

        @param[in,out] exposure  exposure to calibrate (an
            lsst.afw.image.ExposureF or similar);
            in:
            - MaskedImage
            - Psf
            out:
            - MaskedImage has background subtracted
            - Wcs is replaced
            - PhotoCalib is replaced
        @param[in] exposureIdInfo  ID info for exposure (an
            lsst.obs.base.ExposureIdInfo) If not provided, returned
            SourceCatalog IDs will not be globally unique.
        @param[in,out] background  background model already subtracted from
            exposure (an lsst.afw.math.BackgroundList). May be None if no
            background has been subtracted, though that is unusual for
            calibration. A refined background model is output.
        @param[in] icSourceCat  A SourceCatalog from CharacterizeImageTask
            from which we can copy some fields.

        @return pipe_base Struct containing these fields:
        - exposure  calibrate science exposure with refined WCS and PhotoCalib
        - background  model of background subtracted from exposure (an
          lsst.afw.math.BackgroundList)
        - sourceCat  catalog of measured sources
        - astromMatches  list of source/refObj matches from the astrometry
          solver
        """
        # detect, deblend and measure sources
        if exposureIdInfo is None:
            exposureIdInfo = ExposureIdInfo()

        if background is None:
            background = BackgroundList()
        sourceIdFactory = IdFactory.makeSource(exposureIdInfo.expId,
                                               exposureIdInfo.unusedBits)
        table = SourceTable.make(self.schema, sourceIdFactory)
        table.setMetadata(self.algMetadata)

        detRes = self.detection.run(table=table, exposure=exposure,
                                    doSmooth=True)
        sourceCat = detRes.sources
        if detRes.fpSets.background:
            for bg in detRes.fpSets.background:
                background.append(bg)
        if self.config.doSkySources:
            skySourceFootprints = self.skySources.run(mask=exposure.mask, seed=exposureIdInfo.expId)
            if skySourceFootprints:
                for foot in skySourceFootprints:
                    s = sourceCat.addNew()
                    s.setFootprint(foot)
                    s.set(self.skySourceKey, True)
        if self.config.doDeblend:
            self.deblend.run(exposure=exposure, sources=sourceCat)
        self.measurement.run(
            measCat=sourceCat,
            exposure=exposure,
            exposureId=exposureIdInfo.expId
        )
        if self.config.doApCorr:
            self.applyApCorr.run(
                catalog=sourceCat,
                apCorrMap=exposure.getInfo().getApCorrMap()
            )
        self.catalogCalculation.run(sourceCat)

        self.setPrimaryFlags.run(sourceCat, includeDeblend=self.config.doDeblend)

        if icSourceCat is not None and \
           len(self.config.icSourceFieldsToCopy) > 0:
            self.copyIcSourceFields(icSourceCat=icSourceCat,
                                    sourceCat=sourceCat)

        # TODO DM-11568: this contiguous check-and-copy could go away if we
        # reserve enough space during SourceDetection and/or SourceDeblend.
        # NOTE: sourceSelectors require contiguous catalogs, so ensure
        # contiguity now, so views are preserved from here on.
        if not sourceCat.isContiguous():
            sourceCat = sourceCat.copy(deep=True)

        # perform astrometry calibration:
        # fit an improved WCS and update the exposure's WCS in place
        astromMatches = None
        matchMeta = None
        if self.config.doAstrometry:
            try:
                astromRes = self.astrometry.run(
                    exposure=exposure,
                    sourceCat=sourceCat,
                )
                astromMatches = astromRes.matches
                matchMeta = astromRes.matchMeta
            except Exception as e:
                if self.config.requireAstrometry:
                    raise
                self.log.warn("Unable to perform astrometric calibration "
                              "(%s): attempting to proceed" % e)

        # compute photometric calibration
        if self.config.doPhotoCal:
            try:
                photoRes = self.photoCal.run(exposure, sourceCat=sourceCat, expId=exposureIdInfo.expId)
                exposure.setPhotoCalib(photoRes.photoCalib)
                # TODO: reword this to phrase it in terms of the calibration factor?
                self.log.info("Photometric zero-point: %f" %
                              photoRes.photoCalib.instFluxToMagnitude(1.0))
                self.setMetadata(exposure=exposure, photoRes=photoRes)
            except Exception as e:
                if self.config.requirePhotoCal:
                    raise
                self.log.warn("Unable to perform photometric calibration "
                              "(%s): attempting to proceed" % e)
                self.setMetadata(exposure=exposure, photoRes=None)

        if self.config.doInsertFakes:
            self.insertFakes.run(exposure, background=background)

            table = SourceTable.make(self.schema, sourceIdFactory)
            table.setMetadata(self.algMetadata)

            detRes = self.detection.run(table=table, exposure=exposure,
                                        doSmooth=True)
            sourceCat = detRes.sources
            if detRes.fpSets.background:
                for bg in detRes.fpSets.background:
                    background.append(bg)
            if self.config.doDeblend:
                self.deblend.run(exposure=exposure, sources=sourceCat)
            self.measurement.run(
                measCat=sourceCat,
                exposure=exposure,
                exposureId=exposureIdInfo.expId
            )
            if self.config.doApCorr:
                self.applyApCorr.run(
                    catalog=sourceCat,
                    apCorrMap=exposure.getInfo().getApCorrMap()
                )
            self.catalogCalculation.run(sourceCat)

            if icSourceCat is not None and len(self.config.icSourceFieldsToCopy) > 0:
                self.copyIcSourceFields(icSourceCat=icSourceCat,
                                        sourceCat=sourceCat)

        frame = getDebugFrame(self._display, "calibrate")
        if frame:
            displayAstrometry(
                sourceCat=sourceCat,
                exposure=exposure,
                matches=astromMatches,
                frame=frame,
                pause=False,
            )

        return pipeBase.Struct(
            exposure=exposure,
            background=background,
            sourceCat=sourceCat,
            astromMatches=astromMatches,
            matchMeta=matchMeta,
            # These are duplicate entries with different names for use with
            # gen3 middleware
            outputExposure=exposure,
            outputCat=sourceCat,
            outputBackground=background,
        )
コード例 #16
0
    def run(self,
            fakeCats,
            exposure,
            skyMap,
            wcs=None,
            photoCalib=None,
            exposureIdInfo=None,
            icSourceCat=None,
            sfdSourceCat=None,
            externalSkyWcsGlobalCatalog=None,
            externalSkyWcsTractCatalog=None,
            externalPhotoCalibGlobalCatalog=None,
            externalPhotoCalibTractCatalog=None):
        """Add fake sources to a calexp and then run detection, deblending and measurement.

        Parameters
        ----------
        fakeCats : `list` of `lsst.daf.butler.DeferredDatasetHandle`
                    Set of tract level fake catalogs that potentially cover
                    this detectorVisit.
        exposure : `lsst.afw.image.exposure.exposure.ExposureF`
                    The exposure to add the fake sources to
        skyMap : `lsst.skymap.SkyMap`
            SkyMap defining the tracts and patches the fakes are stored over.
        wcs : `lsst.afw.geom.SkyWcs`
                    WCS to use to add fake sources
        photoCalib : `lsst.afw.image.photoCalib.PhotoCalib`
                    Photometric calibration to be used to calibrate the fake sources
        exposureIdInfo : `lsst.obs.base.ExposureIdInfo`
        icSourceCat : `lsst.afw.table.SourceCatalog`
                    Default : None
                    Catalog to take the information about which sources were used for calibration from.
        sfdSourceCat : `lsst.afw.table.SourceCatalog`
                    Default : None
                    Catalog produced by singleFrameDriver, needed to copy some calibration flags from.

        Returns
        -------
        resultStruct : `lsst.pipe.base.struct.Struct`
            contains : outputExposure : `lsst.afw.image.exposure.exposure.ExposureF`
                       outputCat : `lsst.afw.table.source.source.SourceCatalog`

        Notes
        -----
        Adds pixel coordinates for each source to the fakeCat and removes objects with bulge or disk half
        light radius = 0 (if ``config.cleanCat = True``). These columns are called ``x`` and ``y`` and are in
        pixels.

        Adds the ``Fake`` mask plane to the exposure which is then set by `addFakeSources` to mark where fake
        sources have been added. Uses the information in the ``fakeCat`` to make fake galaxies (using galsim)
        and fake stars, using the PSF models from the PSF information for the calexp. These are then added to
        the calexp and the calexp with fakes included returned.

        The galsim galaxies are made using a double sersic profile, one for the bulge and one for the disk,
        this is then convolved with the PSF at that point.

        If exposureIdInfo is not provided then the SourceCatalog IDs will not be globally unique.
        """
        fakeCat = self.composeFakeCat(fakeCats, skyMap)

        if wcs is None:
            wcs = exposure.getWcs()

        if photoCalib is None:
            photoCalib = exposure.getPhotoCalib()

        if self.config.doMatchVisit:
            fakeCat = self.getVisitMatchedFakeCat(fakeCat, exposure)

        self.insertFakes.run(fakeCat, exposure, wcs, photoCalib)

        # detect, deblend and measure sources
        if exposureIdInfo is None:
            exposureIdInfo = ExposureIdInfo()
        returnedStruct = self.calibrate.run(exposure,
                                            exposureIdInfo=exposureIdInfo)
        sourceCat = returnedStruct.sourceCat

        sourceCat = self.copyCalibrationFields(sfdSourceCat, sourceCat,
                                               self.config.srcFieldsToCopy)

        resultStruct = pipeBase.Struct(outputExposure=exposure,
                                       outputCat=sourceCat)
        return resultStruct
コード例 #17
0
    def calibrate(self,
                  exposure,
                  exposureIdInfo=None,
                  background=None,
                  icSourceCat=None):
        """!Calibrate an exposure (science image or coadd)

        @param[in,out] exposure  exposure to calibrate (an
            lsst.afw.image.ExposureF or similar);
            in:
            - MaskedImage
            - Psf
            out:
            - MaskedImage has background subtracted
            - Wcs is replaced
            - Calib zero-point is set
        @param[in] exposureIdInfo  ID info for exposure (an
            lsst.obs.base.ExposureIdInfo) If not provided, returned
            SourceCatalog IDs will not be globally unique.
        @param[in,out] background  background model already subtracted from
            exposure (an lsst.afw.math.BackgroundList). May be None if no
            background has been subtracted, though that is unusual for
            calibration. A refined background model is output.
        @param[in] icSourceCat  A SourceCatalog from CharacterizeImageTask
            from which we can copy some fields.

        @return pipe_base Struct containing these fields:
        - exposure  calibrate science exposure with refined WCS and Calib
        - background  model of background subtracted from exposure (an
          lsst.afw.math.BackgroundList)
        - sourceCat  catalog of measured sources
        - astromMatches  list of source/refObj matches from the astrometry
          solver
        """
        # detect, deblend and measure sources
        if exposureIdInfo is None:
            exposureIdInfo = ExposureIdInfo()

        if background is None:
            background = BackgroundList()
        sourceIdFactory = IdFactory.makeSource(exposureIdInfo.expId,
                                               exposureIdInfo.unusedBits)
        table = SourceTable.make(self.schema, sourceIdFactory)
        table.setMetadata(self.algMetadata)

        if self.config.doInsertFakes:
            self.insertFakes.run(exposure, background=background)

        detRes = self.detection.run(table=table,
                                    exposure=exposure,
                                    doSmooth=True)
        sourceCat = detRes.sources
        if detRes.fpSets.background:
            background.append(detRes.fpSets.background)
        if self.config.doDeblend:
            self.deblend.run(exposure=exposure, sources=sourceCat)
        self.measurement.run(measCat=sourceCat,
                             exposure=exposure,
                             exposureId=exposureIdInfo.expId)
        if self.config.doApCorr:
            self.applyApCorr.run(catalog=sourceCat,
                                 apCorrMap=exposure.getInfo().getApCorrMap())
        self.catalogCalculation.run(sourceCat)

        if icSourceCat is not None and \
           len(self.config.icSourceFieldsToCopy) > 0:
            self.copyIcSourceFields(icSourceCat=icSourceCat,
                                    sourceCat=sourceCat)

        # perform astrometry calibration:
        # fit an improved WCS and update the exposure's WCS in place
        astromMatches = None
        if self.config.doAstrometry:
            try:
                astromRes = self.astrometry.run(
                    exposure=exposure,
                    sourceCat=sourceCat,
                )
                astromMatches = astromRes.matches
            except Exception as e:
                if self.config.requireAstrometry:
                    raise
                self.log.warn("Unable to perform astrometric calibration "
                              "(%s): attempting to proceed" % e)

        # compute photometric calibration
        if self.config.doPhotoCal:
            try:
                photoRes = self.photoCal.run(exposure, sourceCat=sourceCat)
                exposure.getCalib().setFluxMag0(photoRes.calib.getFluxMag0())
                self.log.info("Photometric zero-point: %f" %
                              photoRes.calib.getMagnitude(1.0))
                self.setMetadata(exposure=exposure, photoRes=photoRes)
            except Exception as e:
                if self.config.requirePhotoCal:
                    raise
                self.log.warn("Unable to perform photometric calibration "
                              "(%s): attempting to proceed" % e)
                self.setMetadata(exposure=exposure, photoRes=None)

        frame = getDebugFrame(self._display, "calibrate")
        if frame:
            displayAstrometry(
                sourceCat=sourceCat,
                exposure=exposure,
                matches=astromMatches,
                frame=frame,
                pause=False,
            )

        return pipeBase.Struct(
            exposure=exposure,
            background=background,
            sourceCat=sourceCat,
            astromMatches=astromMatches,
        )
コード例 #18
0
    def run(self,
            fakeCats,
            exposure,
            skyMap,
            wcs=None,
            photoCalib=None,
            exposureIdInfo=None,
            icSourceCat=None,
            sfdSourceCat=None):
        """Add fake sources to a calexp and then run detection, deblending and measurement.

        Parameters
        ----------
        fakeCat : `pandas.core.frame.DataFrame`
                    The catalog of fake sources to add to the exposure
        exposure : `lsst.afw.image.exposure.exposure.ExposureF`
                    The exposure to add the fake sources to
        skyMap : `lsst.skymap.SkyMap`
            SkyMap defining the tracts and patches the fakes are stored over.
        wcs : `lsst.afw.geom.SkyWcs`
                    WCS to use to add fake sources
        photoCalib : `lsst.afw.image.photoCalib.PhotoCalib`
                    Photometric calibration to be used to calibrate the fake sources
        exposureIdInfo : `lsst.obs.base.ExposureIdInfo`
        icSourceCat : `lsst.afw.table.SourceCatalog`
                    Default : None
                    Catalog to take the information about which sources were used for calibration from.
        sfdSourceCat : `lsst.afw.table.SourceCatalog`
                    Default : None
                    Catalog produced by singleFrameDriver, needed to copy some calibration flags from.

        Returns
        -------
        resultStruct : `lsst.pipe.base.struct.Struct`
            Results Strcut containing:

            - outputExposure : Exposure with added fakes
              (`lsst.afw.image.exposure.exposure.ExposureF`)
            - outputCat : Catalog with detected fakes
              (`lsst.afw.table.source.source.SourceCatalog`)
            - ccdVisitFakeMagnitudes : Magnitudes that these fakes were
              inserted with after being scattered (`pandas.DataFrame`)

        Notes
        -----
        Adds pixel coordinates for each source to the fakeCat and removes objects with bulge or disk half
        light radius = 0 (if ``config.cleanCat = True``). These columns are called ``x`` and ``y`` and are in
        pixels.

        Adds the ``Fake`` mask plane to the exposure which is then set by `addFakeSources` to mark where fake
        sources have been added. Uses the information in the ``fakeCat`` to make fake galaxies (using galsim)
        and fake stars, using the PSF models from the PSF information for the calexp. These are then added to
        the calexp and the calexp with fakes included returned.

        The galsim galaxies are made using a double sersic profile, one for the bulge and one for the disk,
        this is then convolved with the PSF at that point.

        If exposureIdInfo is not provided then the SourceCatalog IDs will not be globally unique.
        """
        fakeCat = self.composeFakeCat(fakeCats, skyMap)

        if wcs is None:
            wcs = exposure.getWcs()

        if photoCalib is None:
            photoCalib = exposure.getPhotoCalib()

        if exposureIdInfo is None:
            exposureIdInfo = ExposureIdInfo()

        band = exposure.getFilter().bandLabel
        ccdVisitMagnitudes = self.addVariablity(fakeCat, band, exposure,
                                                photoCalib, exposureIdInfo)

        self.insertFakes.run(fakeCat, exposure, wcs, photoCalib)

        # detect, deblend and measure sources
        returnedStruct = self.calibrate.run(exposure,
                                            exposureIdInfo=exposureIdInfo)
        sourceCat = returnedStruct.sourceCat

        sourceCat = self.copyCalibrationFields(sfdSourceCat, sourceCat,
                                               self.config.srcFieldsToCopy)

        resultStruct = pipeBase.Struct(
            outputExposure=exposure,
            outputCat=sourceCat,
            ccdVisitFakeMagnitudes=ccdVisitMagnitudes)
        return resultStruct
コード例 #19
0
    def run(self,
            fakeCat,
            exposure,
            wcs=None,
            photoCalib=None,
            exposureIdInfo=None,
            icSourceCat=None,
            sfdSourceCat=None):
        """Add fake sources to a calexp and then run detection, deblending and measurement.

        Parameters
        ----------
        fakeCat : `pandas.core.frame.DataFrame`
                    The catalog of fake sources to add to the exposure
        exposure : `lsst.afw.image.exposure.exposure.ExposureF`
                    The exposure to add the fake sources to
        wcs : `lsst.afw.geom.SkyWcs`
                    WCS to use to add fake sources
        photoCalib : `lsst.afw.image.photoCalib.PhotoCalib`
                    Photometric calibration to be used to calibrate the fake sources
        exposureIdInfo : `lsst.obs.base.ExposureIdInfo`
        icSourceCat : `lsst.afw.table.SourceCatalog`
                    Default : None
                    Catalog to take the information about which sources were used for calibration from.
        sfdSourceCat : `lsst.afw.table.SourceCatalog`
                    Default : None
                    Catalog produced by singleFrameDriver, needed to copy some calibration flags from.

        Returns
        -------
        resultStruct : `lsst.pipe.base.struct.Struct`
            contains : outputExposure : `lsst.afw.image.exposure.exposure.ExposureF`
                       outputCat : `lsst.afw.table.source.source.SourceCatalog`

        Notes
        -----
        Adds pixel coordinates for each source to the fakeCat and removes objects with bulge or disk half
        light radius = 0 (if ``config.cleanCat = True``). These columns are called ``x`` and ``y`` and are in
        pixels.

        Adds the ``Fake`` mask plane to the exposure which is then set by `addFakeSources` to mark where fake
        sources have been added. Uses the information in the ``fakeCat`` to make fake galaxies (using galsim)
        and fake stars, using the PSF models from the PSF information for the calexp. These are then added to
        the calexp and the calexp with fakes included returned.

        The galsim galaxies are made using a double sersic profile, one for the bulge and one for the disk,
        this is then convolved with the PSF at that point.

        If exposureIdInfo is not provided then the SourceCatalog IDs will not be globally unique.
        """

        if wcs is None:
            wcs = exposure.getWcs()

        if photoCalib is None:
            photoCalib = exposure.getPhotoCalib()

        self.insertFakes.run(fakeCat, exposure, wcs, photoCalib)

        # detect, deblend and measure sources
        if exposureIdInfo is None:
            exposureIdInfo = ExposureIdInfo()

        sourceIdFactory = IdFactory.makeSource(exposureIdInfo.expId,
                                               exposureIdInfo.unusedBits)
        table = SourceTable.make(self.schema, sourceIdFactory)
        table.setMetadata(self.algMetadata)

        detRes = self.detection.run(table=table,
                                    exposure=exposure,
                                    doSmooth=True)
        sourceCat = detRes.sources
        self.deblend.run(exposure=exposure, sources=sourceCat)
        self.measurement.run(measCat=sourceCat,
                             exposure=exposure,
                             exposureId=exposureIdInfo.expId)
        self.applyApCorr.run(catalog=sourceCat,
                             apCorrMap=exposure.getInfo().getApCorrMap())
        self.catalogCalculation.run(sourceCat)
        sourceCat = self.copyCalibrationFields(
            icSourceCat, sourceCat, self.config.calibrationFieldsToCopy)
        sourceCat = self.copyCalibrationFields(sfdSourceCat, sourceCat,
                                               self.config.srcFieldsToCopy)

        resultStruct = pipeBase.Struct(outputExposure=exposure,
                                       outputCat=sourceCat)
        return resultStruct