def generate_high_am(nside, nexp=1, n_high_am=2, template_weight=6.): """Let's set this up like the blob, but then give it a little extra weight. """ target_map = standard_goals(nside=nside)['r'] target_map[np.where(target_map > 0)] = 1. filters = ['u', 'g'] surveys = [] survey_name = 'high_am' blob_time = 22. # set to something for filtername in filters: detailer_list = [] detailer_list.append( detailers.Camera_rot_detailer(min_rot=-87., max_rot=87.)) detailer_list.append(detailers.Close_alt_detailer()) bfs = [] bfs.append( bf.M5_diff_basis_function(filtername=filtername, nside=nside)) bfs.append( bf.Slewtime_basis_function(filtername=filtername, nside=nside)) bfs.append(bf.Strict_filter_basis_function(filtername=filtername)) bfs.append( bf.N_obs_high_am_basis_function(nside=nside, footprint=target_map, filtername=filtername, n_obs=n_high_am, season=300., out_of_bounds_val=np.nan)) bfs.append(bf.Constant_basis_function()) # Masks, give these 0 weight bfs.append( bf.Zenith_shadow_mask_basis_function(nside=nside, shadow_minutes=60., max_alt=76.)) bfs.append( bf.Moon_avoidance_basis_function(nside=nside, moon_distance=30.)) bfs.append(bf.Filter_loaded_basis_function(filternames=filtername)) bfs.append(bf.Time_to_twilight_basis_function(time_needed=blob_time)) bfs.append(bf.Not_twilight_basis_function()) bfs.append(bf.Planet_mask_basis_function(nside=nside)) weights = np.array( [6., 0.6, 3., template_weight * 2, 1., 0., 0., 0., 0., 0., 0.]) surveys.append( Blob_survey(bfs, weights, filtername1=filtername, filtername2=None, ideal_pair_time=blob_time, nside=nside, survey_note=survey_name, ignore_obs='DD', dither=True, nexp=nexp, detailers=detailer_list)) return surveys
def generate_high_am(nside, nexp=1, n_high_am=2, hair_weight=6., pair_time=22., camera_rot_limits=[-80., 80.], season=300., season_start_hour=-4., season_end_hour=2., shadow_minutes=60., max_alt=76., moon_distance=30., ignore_obs='DD', m5_weight=6., footprint_weight=0.6, slewtime_weight=3., stayfilter_weight=3., template_weight=12., const_weight=1, min_area=288., mask_east=True, mask_west=False, survey_name='high_am', filters='ug'): """Let's set this up like the blob, but then give it a little extra weight. """ target_maps = standard_goals(nside=nside) surveys = [] for filtername in filters: survey_name_final = survey_name+', %s' % filtername target_map = target_maps[filtername]*0 target_map[np.where(target_maps[filtername] == np.max(target_maps[filtername]))] = 1. detailer_list = [] detailer_list.append(detailers.Spider_rot_detailer()) detailer_list.append(detailers.Close_alt_detailer()) bfs = [] bfs.append((bf.M5_diff_basis_function(filtername=filtername, nside=nside), m5_weight)) bfs.append((bf.Slewtime_basis_function(filtername=filtername, nside=nside), slewtime_weight)) bfs.append((bf.Strict_filter_basis_function(filtername=filtername), slewtime_weight)) bfs.append((bf.N_obs_high_am_basis_function(nside=nside, footprint=target_map, filtername=filtername, n_obs=n_high_am, season=season, out_of_bounds_val=np.nan), hair_weight)) bfs.append((bf.Constant_basis_function(), const_weight)) # Masks, give these 0 weight bfs.append((bf.Zenith_shadow_mask_basis_function(nside=nside, shadow_minutes=shadow_minutes, max_alt=max_alt, penalty=np.nan, site='LSST'), 0.)) bfs.append((bf.Moon_avoidance_basis_function(nside=nside, moon_distance=moon_distance), 0.)) bfs.append((bf.Filter_loaded_basis_function(filternames=filtername), 0)) bfs.append((bf.Time_to_twilight_basis_function(time_needed=pair_time), 0.)) bfs.append((bf.Not_twilight_basis_function(), 0.)) bfs.append((bf.Planet_mask_basis_function(nside=nside), 0.)) if mask_east: bfs.append((bf.Mask_azimuth_basis_function(az_min=0., az_max=180.), 0.)) if mask_west: bfs.append((bf.Mask_azimuth_basis_function(az_min=180., az_max=360.), 0.)) weights = [val[1] for val in bfs] basis_functions = [val[0] for val in bfs] surveys.append(Blob_survey(basis_functions, weights, filtername1=filtername, filtername2=None, ideal_pair_time=pair_time, nside=nside, survey_note=survey_name_final, ignore_obs=ignore_obs, dither=True, nexp=nexp, detailers=detailer_list, min_area=min_area)) return surveys
def generate_blobs(nside, nexp=1, exptime=30., filter1s=['u', 'u', 'g', 'r', 'i', 'z', 'y'], filter2s=['g', 'r', 'r', 'i', 'z', 'y', 'y'], pair_time=22., camera_rot_limits=[-80., 80.], n_obs_template=3, season=300., season_start_hour=-4., season_end_hour=2., shadow_minutes=60., max_alt=76., moon_distance=30., ignore_obs='DD', m5_weight=6., footprint_weight=0.6, slewtime_weight=3., stayfilter_weight=3., template_weight=12., footprints=None): """ Generate surveys that take observations in blobs. Parameters ---------- nside : int (32) The HEALpix nside to use nexp : int (1) The number of exposures to use in a visit. exptime : float (30.) The exposure time to use per visit (seconds) filter1s : list of str The filternames for the first set filter2s : list of str The filter names for the second in the pair (None if unpaired) pair_time : float (22) The ideal time between pairs (minutes) camera_rot_limits : list of float ([-80., 80.]) The limits to impose when rotationally dithering the camera (degrees). n_obs_template : int (3) The number of observations to take every season in each filter season : float (300) The length of season (i.e., how long before templates expire) (days) season_start_hour : float (-4.) For weighting how strongly a template image needs to be observed (hours) sesason_end_hour : float (2.) For weighting how strongly a template image needs to be observed (hours) shadow_minutes : float (60.) Used to mask regions around zenith (minutes) max_alt : float (76. The maximium altitude to use when masking zenith (degrees) moon_distance : float (30.) The mask radius to apply around the moon (degrees) ignore_obs : str or list of str ('DD') Ignore observations by surveys that include the given substring(s). m5_weight : float (3.) The weight for the 5-sigma depth difference basis function footprint_weight : float (0.3) The weight on the survey footprint basis function. slewtime_weight : float (3.) The weight on the slewtime basis function stayfilter_weight : float (3.) The weight on basis function that tries to stay avoid filter changes. template_weight : float (12.) The weight to place on getting image templates every season """ blob_survey_params = { 'slew_approx': 7.5, 'filter_change_approx': 140., 'read_approx': 2., 'min_pair_time': 15., 'search_radius': 30., 'alt_max': 85., 'az_range': 90., 'flush_time': 30., 'smoothing_kernel': None, 'nside': nside, 'seed': 42, 'dither': True, 'twilight_scale': True } surveys = [] times_needed = [pair_time, pair_time * 2] for filtername, filtername2 in zip(filter1s, filter2s): detailer_list = [] detailer_list.append( detailers.Camera_rot_detailer(min_rot=np.min(camera_rot_limits), max_rot=np.max(camera_rot_limits))) detailer_list.append(detailers.Close_alt_detailer()) # List to hold tuples of (basis_function_object, weight) bfs = [] if filtername2 is not None: bfs.append( (bf.M5_diff_basis_function(filtername=filtername, nside=nside), m5_weight / 2.)) bfs.append( (bf.M5_diff_basis_function(filtername=filtername2, nside=nside), m5_weight / 2.)) else: bfs.append((bf.M5_diff_basis_function(filtername=filtername, nside=nside), m5_weight)) if filtername2 is not None: bfs.append((bf.Footprint_basis_function(filtername=filtername, footprint=footprints, out_of_bounds_val=np.nan, nside=nside), footprint_weight / 2.)) bfs.append((bf.Footprint_basis_function(filtername=filtername2, footprint=footprints, out_of_bounds_val=np.nan, nside=nside), footprint_weight / 2.)) else: bfs.append( (bf.Footprint_basis_function(filtername=filtername, footprint=footprints, out_of_bounds_val=np.nan, nside=nside), footprint_weight)) bfs.append((bf.Slewtime_basis_function(filtername=filtername, nside=nside), slewtime_weight)) bfs.append((bf.Strict_filter_basis_function(filtername=filtername), stayfilter_weight)) if filtername2 is not None: bfs.append((bf.N_obs_per_year_basis_function( filtername=filtername, nside=nside, footprint=footprints.get_footprint(filtername), n_obs=n_obs_template, season=season, season_start_hour=season_start_hour, season_end_hour=season_end_hour), template_weight / 2.)) bfs.append((bf.N_obs_per_year_basis_function( filtername=filtername2, nside=nside, footprint=footprints.get_footprint(filtername2), n_obs=n_obs_template, season=season, season_start_hour=season_start_hour, season_end_hour=season_end_hour), template_weight / 2.)) else: bfs.append((bf.N_obs_per_year_basis_function( filtername=filtername, nside=nside, footprint=footprints.get_footprint(filtername), n_obs=n_obs_template, season=season, season_start_hour=season_start_hour, season_end_hour=season_end_hour), template_weight)) # Masks, give these 0 weight bfs.append((bf.Zenith_shadow_mask_basis_function( nside=nside, shadow_minutes=shadow_minutes, max_alt=max_alt, penalty=np.nan, site='LSST'), 0.)) bfs.append( (bf.Moon_avoidance_basis_function(nside=nside, moon_distance=moon_distance), 0.)) filternames = [ fn for fn in [filtername, filtername2] if fn is not None ] bfs.append( (bf.Filter_loaded_basis_function(filternames=filternames), 0)) if filtername2 is None: time_needed = times_needed[0] else: time_needed = times_needed[1] bfs.append( (bf.Time_to_twilight_basis_function(time_needed=time_needed), 0.)) bfs.append((bf.Not_twilight_basis_function(), 0.)) bfs.append((bf.Planet_mask_basis_function(nside=nside), 0.)) # unpack the basis functions and weights weights = [val[1] for val in bfs] basis_functions = [val[0] for val in bfs] if filtername2 is None: survey_name = 'blob, %s' % filtername else: survey_name = 'blob, %s%s' % (filtername, filtername2) if filtername2 is not None: detailer_list.append( detailers.Take_as_pairs_detailer(filtername=filtername2)) surveys.append( Blob_survey(basis_functions, weights, filtername1=filtername, filtername2=filtername2, exptime=exptime, ideal_pair_time=pair_time, survey_note=survey_name, ignore_obs=ignore_obs, nexp=nexp, detailers=detailer_list, **blob_survey_params)) return surveys
def generate_blobs(nside, mixed_pairs=False, nexp=1, no_pairs=False, offset=None, template_weight=6.): target_map = wfd_only_fp(nside=nside) norm_factor = calc_norm_factor(target_map) # List to hold all the surveys (for easy plotting later) surveys = [] # Set up observations to be taken in blocks filter1s = ['u', 'g', 'r', 'i', 'z', 'y'] if mixed_pairs: filter2s = [None, 'r', 'i', 'z', None, None] else: filter2s = [None, 'g', 'r', 'i', None, None] if no_pairs: filter2s = [None, None, None, None, None, None] # Ideal time between taking pairs pair_time = 22. times_needed = [pair_time, pair_time * 2] for filtername, filtername2 in zip(filter1s, filter2s): detailer_list = [] detailer_list.append( detailers.Camera_rot_detailer(min_rot=-87., max_rot=87.)) detailer_list.append(detailers.Close_alt_detailer()) bfs = [] bfs.append( bf.M5_diff_basis_function(filtername=filtername, nside=nside)) if filtername2 is not None: bfs.append( bf.M5_diff_basis_function(filtername=filtername2, nside=nside)) bfs.append( bf.Target_map_basis_function(filtername=filtername, target_map=target_map[filtername], out_of_bounds_val=np.nan, nside=nside, norm_factor=norm_factor)) if filtername2 is not None: bfs.append( bf.Target_map_basis_function( filtername=filtername2, target_map=target_map[filtername2], out_of_bounds_val=np.nan, nside=nside, norm_factor=norm_factor)) bfs.append( bf.Slewtime_basis_function(filtername=filtername, nside=nside)) bfs.append(bf.Strict_filter_basis_function(filtername=filtername)) bfs.append( bf.N_obs_per_year_basis_function(filtername=filtername, nside=nside, footprint=target_map[filtername], n_obs=3, season=300.)) if filtername2 is not None: bfs.append( bf.N_obs_per_year_basis_function( filtername=filtername2, nside=nside, footprint=target_map[filtername2], n_obs=3, season=300.)) # Masks, give these 0 weight bfs.append( bf.Zenith_shadow_mask_basis_function(nside=nside, shadow_minutes=60., max_alt=76.)) bfs.append( bf.Moon_avoidance_basis_function(nside=nside, moon_distance=30.)) filternames = [ fn for fn in [filtername, filtername2] if fn is not None ] bfs.append(bf.Filter_loaded_basis_function(filternames=filternames)) if filtername2 is None: time_needed = times_needed[0] else: time_needed = times_needed[1] bfs.append(bf.Time_to_twilight_basis_function(time_needed=time_needed)) bfs.append(bf.Not_twilight_basis_function()) bfs.append(bf.Planet_mask_basis_function(nside=nside)) weights = np.array([ 3.0, 3.0, .3, .3, 3., 3., template_weight, template_weight, 0., 0., 0., 0., 0., 0. ]) if filtername2 is None: # Need to scale weights up so filter balancing still works properly. weights = np.array([ 6.0, 0.6, 3., 3., template_weight * 2, 0., 0., 0., 0., 0., 0. ]) if filtername2 is None: survey_name = 'blob, %s' % filtername else: survey_name = 'blob, %s%s' % (filtername, filtername2) if filtername2 is not None: detailer_list.append( detailers.Take_as_pairs_detailer(filtername=filtername2)) surveys.append( Blob_survey(bfs, weights, filtername1=filtername, filtername2=filtername2, ideal_pair_time=pair_time, nside=nside, survey_note=survey_name, ignore_obs='DD', dither=True, nexp=nexp, detailers=detailer_list)) return surveys
def generate_twilight_neo(nside, night_pattern=None, nexp=1, exptime=1, camera_rot_limits=[-80., 80.], footprint_weight=0.1, slewtime_weight=3., stayfilter_weight=3.): # XXX finish eliminating magic numbers and document this one slew_estimate = 4.5 filters = 'riz' survey_name = 'twilight_neo' footprint = ecliptic_target(nside=nside) footprints = {} for filtername in filters: footprints[filtername] = footprint sum_footprints = 0 for key in footprints: sum_footprints += np.sum(footprints[key]) surveys = [] for filtername in filters: detailer_list = [] detailer_list.append( detailers.Camera_rot_detailer(min_rot=np.min(camera_rot_limits), max_rot=np.max(camera_rot_limits))) detailer_list.append(detailers.Close_alt_detailer()) detailer_list.append( detailers.Twilight_triple_detailer(slew_estimate=slew_estimate, n_repeat=3)) bfs = [] bfs.append( (bf.Footprint_basis_function(filtername=filtername, footprint=footprints[filtername], out_of_bounds_val=np.nan, nside=nside, all_footprints_sum=sum_footprints), footprint_weight)) bfs.append((bf.Slewtime_basis_function(filtername=filtername, nside=nside), slewtime_weight)) bfs.append((bf.Strict_filter_basis_function(filtername=filtername), stayfilter_weight)) # Need a toward the sun, reward high airmass, with an airmass cutoff basis function. bfs.append((bf.Near_sun_twilight_basis_function(nside=nside, max_airmass=2.), 0)) bfs.append((bf.Zenith_shadow_mask_basis_function(nside=nside, shadow_minutes=60., max_alt=76.), 0)) bfs.append((bf.Moon_avoidance_basis_function(nside=nside, moon_distance=30.), 0)) bfs.append( (bf.Filter_loaded_basis_function(filternames=filtername), 0)) bfs.append((bf.Planet_mask_basis_function(nside=nside), 0)) bfs.append((bf.Sun_alt_limit_basis_function(), 0)) bfs.append((bf.Time_in_twilight_basis_function(time_needed=5.), 0)) bfs.append((bf.Night_modulo_basis_function(pattern=night_pattern), 0)) # unpack the basis functions and weights weights = [val[1] for val in bfs] basis_functions = [val[0] for val in bfs] # Set huge ideal pair time and use the detailer to cut down the list of observations to fit twilight? surveys.append( Blob_survey(basis_functions, weights, filtername1=filtername, filtername2=None, ideal_pair_time=3., nside=nside, exptime=exptime, survey_note=survey_name, ignore_obs=['DD', 'greedy', 'blob'], dither=True, nexp=nexp, detailers=detailer_list, az_range=180., twilight_scale=False)) return surveys
def generate_twilight_neo(nside, night_pattern=None): surveys = [] nexp = 1 filters = 'riz' survey_name = 'twilight_neo' target_map_one = ecliptic_target(nside=nside) target_map = {} for filtername in filters: target_map[filtername] = target_map_one norm_factor = calc_norm_factor(target_map) exptime = 1. for filtername in filters: detailer_list = [] detailer_list.append( detailers.Camera_rot_detailer(min_rot=-87., max_rot=87.)) detailer_list.append(detailers.Close_alt_detailer()) detailer_list.append( detailers.Twilight_triple_detailer(slew_estimate=4.5, n_repeat=3)) bfs = [] bfs.append( bf.Target_map_basis_function(filtername=filtername, target_map=target_map[filtername], out_of_bounds_val=np.nan, nside=nside, norm_factor=norm_factor)) bfs.append( bf.Slewtime_basis_function(filtername=filtername, nside=nside)) bfs.append(bf.Strict_filter_basis_function(filtername=filtername)) # XXX # Need a toward the sun, reward high airmass, with an airmass cutoff basis function. bfs.append( bf.Near_sun_twilight_basis_function(nside=nside, max_airmass=2.)) bfs.append( bf.Zenith_shadow_mask_basis_function(nside=nside, shadow_minutes=60., max_alt=76.)) bfs.append( bf.Moon_avoidance_basis_function(nside=nside, moon_distance=30.)) bfs.append(bf.Filter_loaded_basis_function(filternames=filtername)) bfs.append(bf.Planet_mask_basis_function(nside=nside)) bfs.append(bf.Sun_alt_limit_basis_function()) bfs.append(bf.Time_in_twilight_basis_function(time_needed=5.)) bfs.append(bf.Night_modulo_basis_function(pattern=night_pattern)) weights = [0.1, 3., 3., 3., 0., 0., 0., 0., 0., 0., 0.] # Set huge ideal pair time and use the detailer to cut down the list of observations to fit twilight? surveys.append( Blob_survey(bfs, weights, filtername1=filtername, filtername2=None, ideal_pair_time=3., nside=nside, exptime=exptime, survey_note=survey_name, ignore_obs=['DD', 'greedy', 'blob'], dither=True, nexp=nexp, detailers=detailer_list, az_range=180., twilight_scale=False)) return surveys