コード例 #1
0
 def testCreateSqlWhere(self):
     """
     Test that the createSQLWhere method handles expected cases.
     """
     # propTags is a dictionary of lists returned by OpsimDatabase
     propTags = {'WFD':[1, 2, 3], 'DD':[4], 'Rolling':[2]}
     # If tag is in dictionary with one value, returned sql where clause
     #  is simply 'propId = 4'
     tag = 'DD'
     sqlWhere = utils.createSQLWhere(tag, propTags)
     self.assertEqual(sqlWhere, 'propID = 4')
     # if multiple proposals with the same tag, all should be in list.
     tag = 'WFD'
     sqlWhere = utils.createSQLWhere(tag, propTags)
     self.assertEqual(sqlWhere.split()[0], '(propID')
     for id in propTags['WFD']:
         self.assertTrue('%s' %(id) in sqlWhere)
     # And the same id can be in multiple proposals.
     tag = 'Rolling'
     sqlWhere = utils.createSQLWhere(tag, propTags)
     self.assertEqual(sqlWhere, 'propID = 2')
     # And tags not in propTags are handled.
     badprop = 'propID like "NO PROP"'
     tag = 'nogo'
     sqlWhere = utils.createSQLWhere(tag, propTags)
     self.assertEqual(sqlWhere, badprop)
     # And tags which identify no proposal ID are handled.
     propTags['Rolling'] = []
     sqlWhere = utils.createSQLWhere(tag, propTags)
     self.assertEqual(sqlWhere, badprop)
コード例 #2
0
ファイル: testUtils.py プロジェクト: frossie-shadow/sims_maf
 def testCreateSqlWhere(self):
     """
     Test that the createSQLWhere method handles expected cases.
     """
     # propTags is a dictionary of lists returned by OpsimDatabase
     propTags = {'WFD': [1, 2, 3], 'DD': [4], 'Rolling': [2]}
     # If tag is in dictionary with one value, returned sql where clause
     #  is simply 'propId = 4'
     tag = 'DD'
     sqlWhere = utils.createSQLWhere(tag, propTags)
     self.assertEqual(sqlWhere, 'propID = 4')
     # if multiple proposals with the same tag, all should be in list.
     tag = 'WFD'
     sqlWhere = utils.createSQLWhere(tag, propTags)
     self.assertEqual(sqlWhere.split()[0], '(propID')
     for id in propTags['WFD']:
         self.assertTrue('%s' % (id) in sqlWhere)
     # And the same id can be in multiple proposals.
     tag = 'Rolling'
     sqlWhere = utils.createSQLWhere(tag, propTags)
     self.assertEqual(sqlWhere, 'propID = 2')
     # And tags not in propTags are handled.
     badprop = 'propID like "NO PROP"'
     tag = 'nogo'
     sqlWhere = utils.createSQLWhere(tag, propTags)
     self.assertEqual(sqlWhere, badprop)
     # And tags which identify no proposal ID are handled.
     propTags['Rolling'] = []
     sqlWhere = utils.createSQLWhere(tag, propTags)
     self.assertEqual(sqlWhere, badprop)
コード例 #3
0
ファイル: lssExample.py プロジェクト: tololo/sims_maf_contrib
def mConfig(config, runName, dbDir='.', outputDir='Dithers', nside=128, **kwargs):
    """
    A MAF config for analysis of various dithers applied to an opsim run.

    runName must correspond to the name of the opsim output
        (minus '_sqlite.db', although if added this will be stripped off)

    dbDir is the directory containing the sqlite database
    outputDir is the output directory
    """
    config.modules = ['mafContrib']

    # Setup Database access
    config.outputDir = outputDir
    if runName.endswith('_sqlite.db'):
        runName = runName.replace('_sqlite.db', '')
    sqlitefile = os.path.join(dbDir, runName + '_sqlite.db')
    config.dbAddress ={'dbAddress':'sqlite:///'+sqlitefile}
    config.opsimName = runName
    config.figformat = 'pdf'

    # Connect to the database to fetch some values we're using to help configure the driver.
    opsimdb = utils.connectOpsimDb(config.dbAddress)

    # Fetch the proposal ID values from the database
    propids, propTags = opsimdb.fetchPropInfo()
    if 'WFD' not in propTags:
        propTags['WFD'] = []

    # Construct a WFD SQL where clause (handles the case of multiple propIDs mapping into "WFD").
    wfdWhere = utils.createSQLWhere('WFD', propTags)
    print 'WFD "where" clause: %s' %(wfdWhere)

    # Filter list, and map of colors (for plots) to filters.
    filters = ['u','g','r','i','z','y']
    colors={'u':'m','g':'b','r':'g','i':'y','z':'r','y':'k'}
    filtorder = {'u':1,'g':2,'r':3,'i':4,'z':5,'y':6}

    racol = 'ditheredRA'
    deccol = 'ditheredDec'
    filterlist = ['r', 'i']
    slicerList = []
    for f in filterlist:
        sqlconstraint = "filter = '%s'" %(f)
        sqlconstraint += 'and %s' %(wfdWhere)
        # Set up metrics to run for each dither pattern.
        metricList = []
        metricList.append(configureMetric('mafContrib.GalaxyCountsMetric', kwargs={'nside':nside},
                                          displayDict={'group':'Dithers', 'subgroup':'Galaxy Counts',
                                            'order':filtorder[f]}))
        slicer = configureSlicer('HealpixSlicer', kwargs={'nside':nside, 'spatialkey1':racol, 'spatialkey2':deccol},
                                 constraints=[sqlconstraint], metricDict=makeDict(*metricList),
                                 metadata='Default Dither')
        slicerList.append(slicer)

    config.slicers = makeDict(*slicerList)
    return config
コード例 #4
0
def makeBundleList(dbFile, runName=None, nside=64, benchmark='design',
                   lonCol='fieldRA', latCol='fieldDec', seeingCol='FWHMgeom'):
    """
    make a list of metricBundle objects to look at the scientific performance
    of an opsim run.
    """

    # List to hold everything we're going to make
    bundleList = []

    # List to hold metrics that shouldn't be saved
    noSaveBundleList = []

    # Connect to the databse
    opsimdb = utils.connectOpsimDb(dbFile)
    if runName is None:
        runName = os.path.basename(dbFile).replace('_sqlite.db', '')

    # Fetch the proposal ID values from the database
    propids, propTags = opsimdb.fetchPropInfo()

    # Fetch the telescope location from config
    lat, lon, height = opsimdb.fetchLatLonHeight()

    # Add metadata regarding dithering/non-dithered.
    commonname = ''.join([a for a in lonCol if a in latCol])
    if commonname == 'field':
        slicermetadata = ' (non-dithered)'
    else:
        slicermetadata = ' (%s)' % (commonname)

    # Construct a WFD SQL where clause so multiple propIDs can query by WFD:
    wfdWhere = utils.createSQLWhere('WFD', propTags)
    print '#FYI: WFD "where" clause: %s' % (wfdWhere)
    ddWhere = utils.createSQLWhere('DD', propTags)
    print '#FYI: DD "where" clause: %s' % (ddWhere)

    # Set up benchmark values, scaled to length of opsim run.
    runLength = opsimdb.fetchRunLength()
    if benchmark == 'requested':
        # Fetch design values for seeing/skybrightness/single visit depth.
        benchmarkVals = utils.scaleBenchmarks(runLength, benchmark='design')
        # Update nvisits with requested visits from config files.
        benchmarkVals['nvisits'] = opsimdb.fetchRequestedNvisits(propId=propTags['WFD'])
        # Calculate expected coadded depth.
        benchmarkVals['coaddedDepth'] = utils.calcCoaddedDepth(benchmarkVals['nvisits'],
                                                               benchmarkVals['singleVisitDepth'])
    elif (benchmark == 'stretch') or (benchmark == 'design'):
        # Calculate benchmarks for stretch or design.
        benchmarkVals = utils.scaleBenchmarks(runLength, benchmark=benchmark)
        benchmarkVals['coaddedDepth'] = utils.calcCoaddedDepth(benchmarkVals['nvisits'],
                                                               benchmarkVals['singleVisitDepth'])
    else:
        raise ValueError('Could not recognize benchmark value %s, use design, stretch or requested.'
                         % (benchmark))
    # Check that nvisits is not set to zero (for very short run length).
    for f in benchmarkVals['nvisits']:
        if benchmarkVals['nvisits'][f] == 0:
            print 'Updating benchmark nvisits value in %s to be nonzero' % (f)
            benchmarkVals['nvisits'][f] = 1

    # Set values for min/max range of nvisits for All/WFD and DD plots. These are somewhat arbitrary.
    nvisitsRange = {}
    nvisitsRange['all'] = {'u': [20, 80], 'g': [50, 150], 'r': [100, 250],
                           'i': [100, 250], 'z': [100, 300], 'y': [100, 300]}
    nvisitsRange['DD'] = {'u': [6000, 10000], 'g': [2500, 5000], 'r': [5000, 8000],
                          'i': [5000, 8000], 'z': [7000, 10000], 'y': [5000, 8000]}
    # Scale these ranges for the runLength.
    scale = runLength / 10.0
    for prop in nvisitsRange:
        for f in nvisitsRange[prop]:
            for i in [0, 1]:
                nvisitsRange[prop][f][i] = int(np.floor(nvisitsRange[prop][f][i] * scale))

    # Filter list, and map of colors (for plots) to filters.
    filters = ['u', 'g', 'r', 'i', 'z', 'y']
    colors = {'u': 'cyan', 'g': 'g', 'r': 'y', 'i': 'r', 'z': 'm', 'y': 'k'}
    filtorder = {'u': 1, 'g': 2, 'r': 3, 'i': 4, 'z': 5, 'y': 6}

    # Easy way to run through all fi

    # Set up a list of common summary stats
    commonSummary = [metrics.MeanMetric(), metrics.RobustRmsMetric(), metrics.MedianMetric(),
                     metrics.PercentileMetric(metricName='25th%ile', percentile=25),
                     metrics.PercentileMetric(metricName='75th%ile', percentile=75),
                     metrics.MinMetric(), metrics.MaxMetric()]
    allStats = commonSummary

    # Set up some 'group' labels
    reqgroup = 'A: Required SRD metrics'
    depthgroup = 'B: Depth per filter'
    uniformitygroup = 'C: Uniformity'
    airmassgroup = 'D: Airmass distribution'
    seeinggroup = 'E: Seeing distribution'
    transgroup = 'F: Transients'
    sngroup = 'G: SN Ia'
    altAzGroup = 'H: Alt Az'
    rangeGroup = 'I: Range of Dates'
    intergroup = 'J: Inter-Night'
    phaseGroup = 'K: Max Phase Gap'
    NEOGroup = 'L: NEO Detection'

    # Set up an object to track the metricBundles that we want to combine into merged plots.
    mergedHistDict = {}

    # Set the histogram merge function.
    mergeFunc = plots.HealpixHistogram()

    keys = ['NVisits', 'coaddm5', 'NormEffTime', 'Minseeing', 'seeingAboveLimit', 'minAirmass',
            'fracAboveAirmass']

    for key in keys:
        mergedHistDict[key] = plots.PlotBundle(plotFunc=mergeFunc)

    ##
    # Calculate the fO metrics for all proposals and WFD only.
    order = 0
    for prop in ('All prop', 'WFD only'):
        if prop == 'All prop':
            metadata = 'All Visits' + slicermetadata
            sqlconstraint = ''
        if prop == 'WFD only':
            metadata = 'WFD only' + slicermetadata
            sqlconstraint = '%s' % (wfdWhere)
        # Configure the count metric which is what is used for f0 slicer.
        m1 = metrics.CountMetric(col='expMJD', metricName='fO')
        plotDict = {'xlabel': 'Number of Visits', 'Asky': benchmarkVals['Area'],
                    'Nvisit': benchmarkVals['nvisitsTotal'], 'xMin': 0, 'xMax': 1500}
        summaryMetrics = [metrics.fOArea(nside=nside, norm=False, metricName='fOArea: Nvisits (#)',
                                         Asky=benchmarkVals['Area'], Nvisit=benchmarkVals['nvisitsTotal']),
                          metrics.fOArea(nside=nside, norm=True, metricName='fOArea: Nvisits/benchmark',
                                         Asky=benchmarkVals['Area'], Nvisit=benchmarkVals['nvisitsTotal']),
                          metrics.fONv(nside=nside, norm=False, metricName='fONv: Area (sqdeg)',
                                       Asky=benchmarkVals['Area'], Nvisit=benchmarkVals['nvisitsTotal']),
                          metrics.fONv(nside=nside, norm=True, metricName='fONv: Area/benchmark',
                                       Asky=benchmarkVals['Area'], Nvisit=benchmarkVals['nvisitsTotal'])]
        caption = 'The FO metric evaluates the overall efficiency of observing. '
        caption += ('fOArea: Nvisits = %.1f sq degrees receive at least this many visits out of %d. '
                    % (benchmarkVals['Area'], benchmarkVals['nvisitsTotal']))
        caption += ('fONv: Area = this many square degrees out of %.1f receive at least %d visits.'
                    % (benchmarkVals['Area'], benchmarkVals['nvisitsTotal']))
        displayDict = {'group': reqgroup, 'subgroup': 'F0', 'displayOrder': order, 'caption': caption}
        order += 1
        slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol)

        bundle = metricBundles.MetricBundle(m1, slicer, sqlconstraint, plotDict=plotDict,
                                            displayDict=displayDict, summaryMetrics=summaryMetrics,
                                            plotFuncs=[plots.FOPlot()],
                                            runName=runName, metadata=metadata)
        bundleList.append(bundle)

    ###
    # Calculate the Rapid Revisit Metrics.
    order = 0
    metadata = 'All Visits' + slicermetadata
    sqlconstraint = ''
    dTmin = 40.0  # seconds
    dTmax = 30.0  # minutes
    minNvisit = 100
    pixArea = float(hp.nside2pixarea(nside, degrees=True))
    scale = pixArea * hp.nside2npix(nside)
    cutoff1 = 0.15
    extraStats1 = [metrics.FracBelowMetric(cutoff=cutoff1, scale=scale, metricName='Area (sq deg)')]
    extraStats1.extend(commonSummary)
    slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol)
    m1 = metrics.RapidRevisitMetric(metricName='RapidRevisitUniformity',
                                    dTmin=dTmin / 60.0 / 60.0 / 24.0, dTmax=dTmax / 60.0 / 24.0,
                                    minNvisits=minNvisit)

    plotDict = {'xMin': 0, 'xMax': 1}
    summaryStats = extraStats1
    caption = 'Deviation from uniformity for short revisit timescales, between %s and %s seconds, ' % (
        dTmin, dTmax)
    caption += 'for pointings with at least %d visits in this time range. ' % (minNvisit)
    caption += 'Summary statistic "Area" below indicates the area on the sky which has a '
    caption += 'deviation from uniformity of < %.2f.' % (cutoff1)
    displayDict = {'group': reqgroup, 'subgroup': 'Rapid Revisit', 'displayOrder': order,
                   'caption': caption}
    bundle = metricBundles.MetricBundle(m1, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1

    m2 = metrics.NRevisitsMetric(dT=dTmax)
    plotDict = {'xMin': 0, 'xMax': 1000, 'logScale': True}
    cutoff2 = 800
    extraStats2 = [metrics.FracAboveMetric(cutoff=cutoff2, scale=scale, metricName='Area (sq deg)')]
    extraStats2.extend(commonSummary)
    caption = 'Number of consecutive visits with return times faster than %.1f minutes, ' % dTmax
    caption += 'in any filter, all proposals. '
    caption += 'Summary statistic "Area" below indicates the area on the sky which has more than '
    caption += '%d revisits within this time window.' % (cutoff2)
    summaryStats = extraStats2
    displayDict = {'group': reqgroup, 'subgroup': 'Rapid Revisit', 'displayOrder': order,
                   'caption': caption}
    bundle = metricBundles.MetricBundle(m2, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1
    m3 = metrics.NRevisitsMetric(dT=dTmax, normed=True)
    plotDict = {'xMin': 0, 'xMax': 1, 'cbarFormat': '%.1f'}
    cutoff3 = 0.6
    extraStats3 = [metrics.FracAboveMetric(cutoff=cutoff3, scale=scale, metricName='Area (sq deg)')]
    extraStats3.extend(commonSummary)
    summaryStats = extraStats3
    caption = 'Fraction of total visits where consecutive visits have return times faster '
    caption += 'than %.1f minutes, in any filter, all proposals. ' % (dTmax)
    caption += 'Summary statistic "Area" below indicates the area on the sky which has more '
    caption += 'than %d revisits within this time window.' % (cutoff3)
    displayDict = {'group': reqgroup, 'subgroup': 'Rapid Revisit', 'displayOrder': order,
                   'caption': caption}
    bundle = metricBundles.MetricBundle(m3, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1

    # And add a histogram of the time between quick revisits.
    binMin = 0
    binMax = 120.
    binsize = 3.
    bins_metric = np.arange(binMin / 60.0 / 24.0, (binMax + binsize) / 60. / 24., binsize / 60. / 24.)
    bins_plot = bins_metric * 24.0 * 60.0
    m1 = metrics.TgapsMetric(bins=bins_metric, metricName='dT visits')
    plotDict = {'bins': bins_plot, 'xlabel': 'dT (minutes)'}
    caption = ('Histogram of the time between consecutive revisits (<%.1f minutes), over entire sky.'
               % (binMax))
    displayDict = {'group': reqgroup, 'subgroup': 'Rapid Revisit', 'order': order,
                   'caption': caption}
    slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol)
    plotFunc = plots.SummaryHistogram()
    bundle = metricBundles.MetricBundle(m1, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, runName=runName,
                                        metadata=metadata, plotFuncs=[plotFunc])
    bundleList.append(bundle)
    order += 1

    ##
    # Trigonometric parallax and proper motion @ r=20 and r=24
    slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol)
    sqlconstraint = ''
    order = 0
    metric = metrics.ParallaxMetric(metricName='Parallax 20', rmag=20, seeingCol=seeingCol)
    summaryStats = allStats
    plotDict = {'cbarFormat': '%.1f', 'xMin': 0, 'xMax': 3}
    displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order,
                   'caption': 'Parallax precision at r=20. (without refraction).'}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1
    metric = metrics.ParallaxMetric(metricName='Parallax 24', rmag=24, seeingCol=seeingCol)
    plotDict = {'cbarFormat': '%.1f', 'xMin': 0, 'xMax': 10}
    displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order,
                   'caption': 'Parallax precision at r=24. (without refraction).'}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1
    metric = metrics.ParallaxMetric(metricName='Parallax Normed', rmag=24, normalize=True,
                                    seeingCol=seeingCol)
    plotDict = {'xMin': 0.5, 'xMax': 1.0}
    displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order,
                   'caption':
                   'Normalized parallax (normalized to optimum observation cadence, 1=optimal).'}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1
    metric = metrics.ParallaxCoverageMetric(metricName='Parallax Coverage 20', rmag=20, seeingCol=seeingCol)
    plotDict = {}
    caption = "Parallax factor coverage for an r=20 star (0 is bad, 0.5-1 is good). "
    caption += "One expects the parallax factor coverage to vary because stars on the ecliptic "
    caption += "can be observed when they have no parallax offset while stars at the pole are always "
    caption += "offset by the full parallax offset."""
    displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order,
                   'caption': caption}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1
    metric = metrics.ParallaxCoverageMetric(metricName='Parallax Coverage 24', rmag=24, seeingCol=seeingCol)
    plotDict = {}
    caption = "Parallax factor coverage for an r=24 star (0 is bad, 0.5-1 is good). "
    caption += "One expects the parallax factor coverage to vary because stars on the ecliptic "
    caption += "can be observed when they have no parallax offset while stars at the pole are always "
    caption += "offset by the full parallax offset."""
    displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order,
                   'caption': caption}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1
    metric = metrics.ParallaxHADegenMetric(metricName='Parallax-DCR degeneracy 20', rmag=20,
                                           seeingCol=seeingCol)
    plotDict = {}
    caption = 'Correlation between parallax offset magnitude and hour angle an r=20 star.'
    caption += ' (0 is good, near -1 or 1 is bad).'
    displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order,
                   'caption': caption}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1
    metric = metrics.ParallaxHADegenMetric(metricName='Parallax-DCR degeneracy 24', rmag=24,
                                           seeingCol=seeingCol)
    plotDict = {}
    caption = 'Correlation between parallax offset magnitude and hour angle an r=24 star.'
    caption += ' (0 is good, near -1 or 1 is bad).'
    displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order,
                   'caption': caption}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1

    metric = metrics.ProperMotionMetric(metricName='Proper Motion 20', rmag=20, seeingCol=seeingCol)

    summaryStats = allStats
    plotDict = {'xMin': 0, 'xMax': 3}
    displayDict = {'group': reqgroup, 'subgroup': 'Proper Motion', 'order': order,
                   'caption': 'Proper Motion precision at r=20.'}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1
    metric = metrics.ProperMotionMetric(rmag=24, metricName='Proper Motion 24', seeingCol=seeingCol)
    summaryStats = allStats
    plotDict = {'xMin': 0, 'xMax': 10}
    displayDict = {'group': reqgroup, 'subgroup': 'Proper Motion', 'order': order,
                   'caption': 'Proper Motion precision at r=24.'}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1
    metric = metrics.ProperMotionMetric(rmag=24, normalize=True, metricName='Proper Motion Normed',
                                        seeingCol=seeingCol)
    plotDict = {'xMin': 0.2, 'xMax': 0.7}
    caption = 'Normalized proper motion at r=24. '
    caption += '(normalized to optimum observation cadence - start/end. 1=optimal).'
    displayDict = {'group': reqgroup, 'subgroup': 'Proper Motion', 'order': order,
                   'caption': caption}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1

    ##
    # Calculate the time uniformity in each filter, for each year.
    order = 0

    slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol)
    plotFuncs = [plots.TwoDMap()]
    step = 0.5
    bins = np.arange(0, 365.25 * 10 + 40, 40) - step
    metric = metrics.AccumulateUniformityMetric(bins=bins)
    plotDict = {'xlabel': 'Night (days)', 'xextent': [bins.min(
    ) + step, bins.max() + step], 'cbarTitle': 'Uniformity'}
    for f in filters:
        sqlconstraint = 'filter = "%s"' % (f)
        caption = 'Deviation from uniformity in %s band. ' % f
        caption += 'Northern Healpixels are at the top of the image.'
        caption += '(0=perfectly uniform, 1=perfectly nonuniform).'
        displayDict = {'group': uniformitygroup, 'subgroup': 'per night',
                       'order': filtorder[f], 'caption': caption}
        metadata = '%s band' % (f) + slicermetadata
        bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                            displayDict=displayDict, runName=runName, metadata=metadata,
                                            plotFuncs=plotFuncs)
        noSaveBundleList.append(bundle)

    ##
    # Depth metrics.
    slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol)
    for f in filters:
        propCaption = '%s band, all proposals %s' % (f, slicermetadata)
        sqlconstraint = 'filter = "%s"' % (f)
        metadata = '%s band' % (f) + slicermetadata
        # Number of visits.
        metric = metrics.CountMetric(col='expMJD', metricName='NVisits')
        plotDict = {'xlabel': 'Number of visits',
                    'xMin': nvisitsRange['all'][f][0],
                    'xMax': nvisitsRange['all'][f][1], 'binsize': 5,
                    'logScale': True, 'nTicks': 4, 'colorMin': 1}
        summaryStats = allStats
        displayDict = {'group': depthgroup, 'subgroup': 'Nvisits', 'order': filtorder[f],
                       'caption': 'Number of visits in filter %s, %s.' % (f, propCaption)}
        histMerge = {'color': colors[f], 'label': '%s' % (f),
                     'binsize': 5,
                     'xMin': nvisitsRange['all'][f][0], 'xMax': nvisitsRange['all'][f][1],
                     'legendloc': 'upper right'}
        bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                            displayDict=displayDict, runName=runName, metadata=metadata,
                                            summaryMetrics=summaryStats)
        mergedHistDict['NVisits'].addBundle(bundle, plotDict=histMerge)
        bundleList.append(bundle)
        # Coadded depth.
        metric = metrics.Coaddm5Metric()
        plotDict = {'zp': benchmarkVals['coaddedDepth'][f], 'xMin': -0.8, 'xMax': 0.8,
                    'xlabel': 'coadded m5 - %.1f' % benchmarkVals['coaddedDepth'][f]}
        summaryStats = allStats
        histMerge = {'legendloc': 'upper right', 'color': colors[f], 'label': '%s' % f, 'binsize': .02,
                     'xlabel': 'coadded m5 - benchmark value'}
        caption = ('Coadded depth in filter %s, with %s value subtracted (%.1f), %s. '
                   % (f, benchmark, benchmarkVals['coaddedDepth'][f], propCaption))
        caption += 'More positive numbers indicate fainter limiting magnitudes.'
        displayDict = {'group': depthgroup, 'subgroup': 'Coadded Depth',
                       'order': filtorder[f], 'caption': caption}
        bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                            displayDict=displayDict, runName=runName, metadata=metadata,
                                            summaryMetrics=summaryStats)
        mergedHistDict['coaddm5'].addBundle(bundle, plotDict=histMerge)
        bundleList.append(bundle)
        # Effective time.
        metric = metrics.TeffMetric(metricName='Normalized Effective Time', normed=True,
                                    fiducialDepth=benchmarkVals['singleVisitDepth'])
        plotDict = {'xMin': 0.1, 'xMax': 1.1}
        summaryStats = allStats
        histMerge = {'legendLoc': 'upper right', 'color': colors[f], 'label': '%s' % f, 'binsize': 0.02}
        caption = ('"Time Effective" in filter %s, calculated with fiducial single-visit depth of %s mag. '
                   % (f, benchmarkVals['singleVisitDepth'][f]))
        caption += 'Normalized by the fiducial time effective, if every observation was at '
        caption += 'the fiducial depth.'
        displayDict = {'group': depthgroup, 'subgroup': 'Time Eff.',
                       'order': filtorder[f], 'caption': caption}
        bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                            displayDict=displayDict, runName=runName, metadata=metadata,
                                            summaryMetrics=summaryStats)
        mergedHistDict['NormEffTime'].addBundle(bundle, plotDict=histMerge)
        bundleList.append(bundle)

    # Put in a z=0.5 Type Ia SN, based on Cambridge 2015 workshop notebook.
    # Check for 1) detection in any band, 2) detection on the rise in any band,
    # 3) good characterization
    peaks = {'uPeak': 25.9, 'gPeak': 23.6, 'rPeak': 22.6, 'iPeak': 22.7, 'zPeak': 22.7, 'yPeak': 22.8}
    peakTime = 15.
    transDuration = peakTime + 30.  # Days
    metric = metrics.TransientMetric(riseSlope=-2. / peakTime, declineSlope=1.4 / 30.0,
                                     transDuration=transDuration, peakTime=peakTime,
                                     surveyDuration=runLength,
                                     metricName='SNDetection', **peaks)
    caption = 'Fraction of z=0.5 type Ia SN that are detected in any filter'
    displayDict = {'group': transgroup, 'subgroup': 'Detected', 'caption': caption}
    sqlconstraint = ''
    metadata = '' + slicermetadata
    plotDict = {}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, runName=runName, metadata=metadata)
    bundleList.append(bundle)

    metric = metrics.TransientMetric(riseSlope=-2. / peakTime, declineSlope=1.4 / 30.0,
                                     transDuration=transDuration, peakTime=peakTime,
                                     surveyDuration=runLength,
                                     nPrePeak=1, metricName='SNAlert', **peaks)
    caption = 'Fraction of z=0.5 type Ia SN that are detected pre-peak in any filter'
    displayDict = {'group': transgroup, 'subgroup': 'Detected on the rise', 'caption': caption}
    plotDict = {}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, runName=runName, metadata=metadata)
    bundleList.append(bundle)

    metric = metrics.TransientMetric(riseSlope=-2. / peakTime, declineSlope=1.4 / 30.,
                                     transDuration=transDuration, peakTime=peakTime,
                                     surveyDuration=runLength, metricName='SNLots',
                                     nFilters=3, nPrePeak=3, nPerLC=2, **peaks)
    caption = 'Fraction of z=0.5 type Ia SN that are observed 6 times, 3 pre-peak, '
    caption += '3 post-peak, with observations in 3 filters'
    displayDict = {'group': transgroup, 'subgroup': 'Well observed', 'caption': caption}
    sqlconstraint = 'filter="r" or filter="g" or filter="i" or filter="z" '
    plotDict = {}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, runName=runName, metadata=metadata)
    bundleList.append(bundle)

    # Good seeing in r/i band metrics, including in first/second years.
    order = 0
    for tcolor, tlabel, timespan in zip(['k', 'g', 'r'], ['10 years', '1 year', '2 years'],
                                        ['', ' and night<=365', ' and night<=730']):
        order += 1
        for f in (['r', 'i']):
            sqlconstraint = 'filter = "%s" %s' % (f, timespan)
            propCaption = '%s band, all proposals %s, over %s.' % (f, slicermetadata, tlabel)
            metadata = '%s band, %s' % (f, tlabel) + slicermetadata
            seeing_limit = 0.7
            airmass_limit = 1.2
            metric = metrics.MinMetric(col=seeingCol)
            summaryStats = allStats
            plotDict = {'xMin': 0.35, 'xMax': 1.5, 'color': tcolor}
            displayDict = {'group': seeinggroup, 'subgroup': 'Best Seeing',
                           'order': filtorder[f] * 100 + order,
                           'caption': 'Minimum FWHMgeom values in %s.' % (propCaption)}
            histMerge = {'label': '%s %s' % (f, tlabel), 'color': tcolor,
                         'binsize': 0.03, 'xMin': 0.35, 'xMax': 1.5, 'legendloc': 'upper right'}
            bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                                displayDict=displayDict, runName=runName, metadata=metadata,
                                                summaryMetrics=summaryStats)
            mergedHistDict['Minseeing'].addBundle(bundle, plotDict=histMerge)
            bundleList.append(bundle)

            metric = metrics.FracAboveMetric(col=seeingCol, cutoff=seeing_limit)
            summaryStats = allStats
            plotDict = {'xMin': 0, 'xMax': 1.1, 'color': tcolor}
            displayDict = {'group': seeinggroup, 'subgroup': 'Good seeing fraction',
                           'order': filtorder[f] * 100 + order,
                           'caption': 'Fraction of total images with FWHMgeom worse than %.1f, in %s'
                           % (seeing_limit, propCaption)}
            histMerge = {'color': tcolor, 'label': '%s %s' % (f, tlabel),
                         'binsize': 0.05, 'legendloc': 'upper right'}
            bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                                displayDict=displayDict, runName=runName, metadata=metadata,
                                                summaryMetrics=summaryStats)
            mergedHistDict['seeingAboveLimit'].addBundle(bundle, plotDict=histMerge)
            bundleList.append(bundle)

            metric = metrics.MinMetric(col='airmass')
            plotDict = {'xMin': 1, 'xMax': 1.5, 'color': tcolor}
            summaryStats = allStats
            displayDict = {'group': airmassgroup, 'subgroup': 'Best Airmass',
                           'order': filtorder[f] * 100 + order, 'caption':
                           'Minimum airmass in %s.' % (propCaption)}
            histMerge = {'color': tcolor, 'label': '%s %s' % (f, tlabel),
                         'binsize': 0.03, 'legendloc': 'upper right'}
            bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                                displayDict=displayDict, runName=runName, metadata=metadata,
                                                summaryMetrics=summaryStats)
            mergedHistDict['minAirmass'].addBundle(bundle, plotDict=histMerge)
            bundleList.append(bundle)

            metric = metrics.FracAboveMetric(col='airmass', cutoff=airmass_limit)
            plotDict = {'xMin': 0, 'xMax': 1, 'color': tcolor}
            summaryStats = allStats
            displayDict = {'group': airmassgroup, 'subgroup': 'Low airmass fraction',
                           'order': filtorder[f] * 100 + order, 'caption':
                           'Fraction of total images with airmass higher than %.2f, in %s'
                           % (airmass_limit, propCaption)}
            histMerge = {'color': tcolor, 'label': '%s %s' % (
                f, tlabel), 'binsize': 0.05, 'legendloc': 'upper right'}

            bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                                displayDict=displayDict, runName=runName, metadata=metadata,
                                                summaryMetrics=summaryStats)
            mergedHistDict['fracAboveAirmass'].addBundle(bundle, plotDict=histMerge)
            bundleList.append(bundle)

# SNe metrics from UK workshop.
    peaks = {'uPeak': 25.9, 'gPeak': 23.6, 'rPeak': 22.6, 'iPeak': 22.7, 'zPeak': 22.7, 'yPeak': 22.8}
    peakTime = 15.
    transDuration = peakTime + 30.  # Days
    metric = metrics.TransientMetric(riseSlope=-2. / peakTime, declineSlope=1.4 / 30.0,
                                     transDuration=transDuration, peakTime=peakTime,
                                     surveyDuration=runLength,
                                     metricName='SNDetection', **peaks)
    caption = 'Fraction of z=0.5 type Ia SN that are detected at any point in their light curve in any filter'
    displayDict = {'group': sngroup, 'subgroup': 'Detected', 'caption': caption}
    sqlconstraint = ''
    plotDict = {}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, runName=runName)
    bundleList.append(bundle)

    metric = metrics.TransientMetric(riseSlope=-2. / peakTime, declineSlope=1.4 / 30.0,
                                     transDuration=transDuration, peakTime=peakTime,
                                     surveyDuration=runLength,
                                     nPrePeak=1, metricName='SNAlert', **peaks)
    caption = 'Fraction of z=0.5 type Ia SN that are detected pre-peak in any filter'
    displayDict = {'group': sngroup, 'subgroup': 'Detected on the rise', 'caption': caption}
    plotDict = {}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, runName=runName)
    bundleList.append(bundle)

    metric = metrics.TransientMetric(riseSlope=-2. / peakTime, declineSlope=1.4 / 30.,
                                     transDuration=transDuration, peakTime=peakTime,
                                     surveyDuration=runLength, metricName='SNLots',
                                     nFilters=3, nPrePeak=3, nPerLC=2, **peaks)
    caption = 'Fraction of z=0.5 type Ia SN that are observed 6 times, 3 pre-peak, '
    caption += '3 post-peak, with observations in 3 filters'
    displayDict = {'group': sngroup, 'subgroup': 'Well observed', 'caption': caption}
    sqlconstraint = 'filter="r" or filter="g" or filter="i" or filter="z" '
    plotDict = {}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, runName=runName)
    bundleList.append(bundle)

    propIDOrderDict = {}
    orderVal = 100
    for propID in propids:
        propIDOrderDict[propID] = orderVal
        orderVal += 100

    # Full range of dates:
    metric = metrics.FullRangeMetric(col='expMJD')
    plotFuncs = [plots.HealpixSkyMap(), plots.HealpixHistogram()]
    caption = 'Time span of survey.'
    sqlconstraint = ''
    plotDict = {}
    displayDict = {'group': rangeGroup, 'caption': caption}

    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, runName=runName)
    bundleList.append(bundle)
    for f in filters:
        for propid in propids:
            displayDict = {'group': rangeGroup, 'subgroup': propids[propid], 'caption': caption,
                           'order': filtorder[f]}
            md = '%s, %s' % (f, propids[propid])
            sql = 'filter="%s" and propID=%i' % (f, propid)
            bundle = metricBundles.MetricBundle(metric, slicer, sql, plotDict=plotDict,
                                                metadata=md, plotFuncs=plotFuncs,
                                                displayDict=displayDict, runName=runName)
            bundleList.append(bundle)

    # Alt az plots
    slicer = slicers.HealpixSlicer(nside=64, latCol='zenithDistance', lonCol='azimuth', useCache=False)
    metric = metrics.CountMetric('expMJD', metricName='Nvisits as function of Alt/Az')
    plotDict = {}
    plotFuncs = [plots.LambertSkyMap()]
    displayDict = {'group': altAzGroup, 'caption': 'Alt Az pointing distribution'}
    for f in filters:
        for propid in propids:
            displayDict = {'group': altAzGroup, 'subgroup': propids[propid],
                           'caption': 'Alt Az pointing distribution',
                           'order': filtorder[f]}
            md = '%s, %s' % (f, propids[propid])
            sql = 'filter="%s" and propID=%i' % (f, propid)
            bundle = metricBundles.MetricBundle(metric, slicer, sql, plotDict=plotDict,
                                                plotFuncs=plotFuncs, metadata=md,
                                                displayDict=displayDict, runName=runName)
            bundleList.append(bundle)

    sql = ''
    md = 'all observations'
    displayDict = {'group': altAzGroup, 'subgroup': 'All Observations',
                   'caption': 'Alt Az pointing distribution'}
    bundle = metricBundles.MetricBundle(metric, slicer, sql, plotDict=plotDict,
                                        plotFuncs=plotFuncs, metadata=md,
                                        displayDict=displayDict, runName=runName)
    bundleList.append(bundle)

    # Median inter-night gap (each and all filters)
    slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol)
    metric = metrics.InterNightGapsMetric(metricName='Median Inter-Night Gap')
    sqls = ['filter = "%s"' % f for f in filters]
    orders = [filtorder[f] for f in filters]
    orders.append(0)
    sqls.append('')
    for sql, order in zip(sqls, orders):
        displayDict = {'group': intergroup, 'subgroup': 'Median Gap', 'caption': 'Median gap between days',
                       'order': order}
        bundle = metricBundles.MetricBundle(metric, slicer, sql, displayDict=displayDict, runName=runName)
        bundleList.append(bundle)

    # Max inter-night gap in r and all bands
    dslicer = slicers.HealpixSlicer(nside=nside, lonCol='ditheredRA', latCol='ditheredDec')
    metric = metrics.InterNightGapsMetric(metricName='Max Inter-Night Gap', reduceFunc=np.max)

    plotDict = {'percentileClip': 95.}
    for sql, order in zip(sqls, orders):
        displayDict = {'group': intergroup, 'subgroup': 'Max Gap', 'caption': 'Max gap between nights',
                       'order': order}
        bundle = metricBundles.MetricBundle(metric, dslicer, sql, displayDict=displayDict,
                                            plotDict=plotDict, runName=runName)
        bundleList.append(bundle)

    # largest phase gap for periods
    periods = [0.1, 1.0, 10., 100.]
    sqls = {'u': 'filter = "u"', 'r': 'filter="r"',
            'g,r,i,z': 'filter="g" or filter="r" or filter="i" or filter="z"',
            'all': ''}

    for sql in sqls.keys():
        for period in periods:
            displayDict = {'group': phaseGroup,
                           'subgroup': 'period=%.2f days, filter=%s' % (period, sql),
                           'caption': 'Maximum phase gaps'}
            metric = metrics.PhaseGapMetric(nPeriods=1, periodMin=period, periodMax=period,
                                            metricName='PhaseGap, %.1f' % period)
            bundle = metricBundles.MetricBundle(metric, slicer, sqls[sql],
                                                displayDict=displayDict, runName=runName)
            bundleList.append(bundle)

    # NEO XY plots
    slicer = slicers.UniSlicer()
    metric = metrics.PassMetric(metricName='NEODistances')
    stacker = stackers.NEODistStacker()
    stacker2 = stackers.EclipticStacker()
    for f in filters:
        plotFunc = plots.NeoDistancePlotter(eclipMax=10., eclipMin=-10.)
        caption = 'Observations within 10 degrees of the ecliptic. Distance an H=22 NEO would be detected'
        displayDict = {'group': NEOGroup, 'subgroup': 'xy', 'order': filtorder[f],
                       'caption': caption}
        plotDict = {}
        sqlconstraint = 'filter = "%s"' % (f)
        bundle = metricBundles.MetricBundle(metric, slicer,
                                            sqlconstraint, displayDict=displayDict,
                                            stackerList=[stacker, stacker2],
                                            plotDict=plotDict,
                                            plotFuncs=[plotFunc])
        noSaveBundleList.append(bundle)

    # Solar elongation
    sqls = ['filter = "%s"' % f for f in filters]
    orders = [filtorder[f] for f in filters]
    sqls.append('')
    orders.append(0)
    for sql, order in zip(sqls, orders):
        plotFuncs = [plots.HealpixSkyMap(), plots.HealpixHistogram()]
        displayDict = {'group': NEOGroup, 'subgroup': 'Solar Elongation',
                       'caption': 'Median solar elongation in degrees', 'order': order}
        metric = metrics.MedianMetric('solarElong')
        slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol)
        bundle = metricBundles.MetricBundle(metric, slicer, sql, displayDict=displayDict,
                                            plotFuncs=plotFuncs)
        bundleList.append(bundle)

        plotFuncs = [plots.HealpixSkyMap(), plots.HealpixHistogram()]
        displayDict = {'group': NEOGroup, 'subgroup': 'Solar Elongation',
                       'caption': 'Minimum solar elongation in degrees', 'order': order}
        metric = metrics.MinMetric('solarElong')
        slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol)
        bundle = metricBundles.MetricBundle(metric, slicer, sql, displayDict=displayDict,
                                            plotFuncs=plotFuncs)
        bundleList.append(bundle)

    return (metricBundles.makeBundlesDictFromList(bundleList), mergedHistDict,
            metricBundles.makeBundlesDictFromList(noSaveBundleList))
コード例 #5
0
def coaddM5Analysis(path,
                    dbfile,
                    runName,
                    WFDandDDFs=False,
                    noDithOnly=False,
                    bestDithOnly=False,
                    someDithOnly=False,
                    nside=128,
                    filterBand='r',
                    includeDustExtinction=False,
                    saveunMaskedCoaddData=False,
                    pixelRadiusForMasking=5,
                    cutOffYear=None,
                    plotSkymap=True,
                    plotCartview=True,
                    unmaskedColorMin=None,
                    unmaskedColorMax=None,
                    maskedColorMin=None,
                    maskedColorMax=None,
                    nTicks=5,
                    plotPowerSpectrum=True,
                    showPlots=True,
                    saveFigs=True,
                    almAnalysis=True,
                    raRange=[-50, 50],
                    decRange=[-65, 5],
                    saveMaskedCoaddData=True):
    """

    Analyze the artifacts induced in the coadded 5sigma depth due to imperfect observing strategy.
      - Creates an output directory for subdirectories containing the specified things to save.
      - Creates, shows, and saves comparison plots.
      - Returns the metricBundle object containing the calculated coadded depth, and the output directory name.

    Required Parameters
    -------------------
      * path: str: path to the main directory where output directory is to be saved.
      * dbfile: str: path to the OpSim output file, e.g. to a copy of enigma_1189
      * runName: str: run name tag to identify the output of specified OpSim output, e.g. 'enigma1189' 

    Optional Parameters
    -------------------
      * WFDandDDFs: boolean: set to True if want to consider both WFD survet and DDFs. Otherwise will only work
                             with WFD. Default: False
      * noDithOnly: boolean: set to True if only want to consider the undithered survey. Default: False
      * bestDithOnly: boolean: set to True if only want to consider RepulsiveRandomDitherFieldPerVisit. 
                               Default: False
      * someDithOnly: boolean: set to True if only want to consider undithered and a few dithered surveys. 
                               Default: False
      * nside: int: HEALpix resolution parameter. Default: 128
      * filterBand: str: any one of 'u', 'g', 'r', 'i', 'z', 'y'. Default: 'r'
     
      * includeDustExtinction: boolean: set to include dust extinction. Default: False
      * saveunMaskedCoaddData: boolean: set to True to save data before border masking. Default: False

      * pixelRadiusForMasking: int: number of pixels to mask along the shallow border. Default: 5

      * cutOffYear: int: year cut to restrict analysis to only a subset of the survey. 
                         Must range from 1 to 9, or None for the full survey analysis (10 yrs).
                         Default: None
    
      * plotSkymap: boolean: set to True if want to plot skymaps. Default: True
      * plotCartview: boolean: set to True if want to plot cartview plots. Default: False
      * unmaskedColorMin: float: lower limit on the colorscale for unmasked skymaps. Default: None
      * unmaskedColorMax: float: upper limit on the colorscale for unmasked skymaps. Default: None

      * maskedColorMin: float: lower limit on the colorscale for border-masked skymaps. Default: None
      * maskedColorMax: float: upper limit on the colorscale for border-masked skymaps. Default: None
      * nTicks: int: (number of ticks - 1) on the skymap colorbar. Default: 5
      
      * plotPowerSpectrum: boolean: set to True if want to plot powerspectra. Default: True

      * showPlots: boolean: set to True if want to show figures. Default: True
      * saveFigs: boolean: set to True if want to save figures. Default: True
      
      * almAnalysis: boolean: set to True to perform the alm analysis. Default: True
      * raRange: float array: range of right ascention (in degrees) to consider in alm  cartview plot;
                              applicable when almAnalysis= True. Default: [-50,50]
      * decRange: float array: range of declination (in degrees) to consider in alm cartview plot; 
                               applicable when almAnalysis= True. Default: [-65,5]

      * saveMaskedCoaddData: boolean: set to True to save the coadded depth data after the border
                                      masking. Default: True

    """
    # OpSim database
    opsdb = db.OpsimDatabase(dbfile)

    # set up the outDir
    add = ''
    if cutOffYear is not None: add = str(cutOffYear) + 'yearCut'
    else: add = 'fullSurveyPeriod'

    if includeDustExtinction: add2 = 'withDustExtinction'
    else: add2 = 'noDustExtinction'

    regionType = ''
    if WFDandDDFs:
        regionType = 'WFDandDDFs_'

    outDir = 'coaddM5Analysis_' + regionType + 'nside' + str(
        nside
    ) + '_' + add2 + '_' + str(
        pixelRadiusForMasking
    ) + 'pixelRadiusForMasking_' + filterBand + 'Band_' + runName + '_' + add + '_directory'
    print('# outDir: ', outDir)
    resultsDb = db.ResultsDb(outDir=outDir)

    # set up the sql constraint
    if WFDandDDFs:
        if cutOffYear is not None:
            nightCutOff = (cutOffYear) * 365.25
            sqlconstraint = 'night <= ' + str(
                nightCutOff) + ' and filter=="' + filterBand + '"'
        else:
            sqlconstraint = 'filter=="' + filterBand + '"'
    else:
        propIds, propTags = opsdb.fetchPropInfo()
        wfdWhere = mafUtils.createSQLWhere('WFD', propTags)
        if cutOffYear is not None:
            nightCutOff = (cutOffYear) * 365.25
            sqlconstraint = wfdWhere + ' and night <= ' + str(
                nightCutOff) + ' and filter=="' + filterBand + '"'
        else:
            sqlconstraint = wfdWhere + ' and filter=="' + filterBand + '"'
    print('# sqlconstraint: ', sqlconstraint)

    # setup all the slicers
    slicer = {}
    stackerList = {}

    if bestDithOnly:
        stackerList['RepulsiveRandomDitherFieldPerVisit'] = [
            myStackers.RepulsiveRandomDitherFieldPerVisitStacker(
                randomSeed=1000)
        ]
        slicer['RepulsiveRandomDitherFieldPerVisit'] = slicers.HealpixSlicer(
            lonCol='repulsiveRandomDitherFieldPerVisitRa',
            latCol='repulsiveRandomDitherFieldPerVisitDec',
            nside=nside,
            useCache=False)
    else:
        slicer['NoDither'] = slicers.HealpixSlicer(lonCol='fieldRA',
                                                   latCol='fieldDec',
                                                   nside=nside,
                                                   useCache=False)
        if someDithOnly and not noDithOnly:
            stackerList['RepulsiveRandomDitherFieldPerVisit'] = [
                myStackers.RepulsiveRandomDitherFieldPerVisitStacker(
                    randomSeed=1000)
            ]
            slicer[
                'RepulsiveRandomDitherFieldPerVisit'] = slicers.HealpixSlicer(
                    lonCol='repulsiveRandomDitherFieldPerVisitRa',
                    latCol='repulsiveRandomDitherFieldPerVisitDec',
                    nside=nside,
                    useCache=False)
            slicer['SequentialHexDitherFieldPerNight'] = slicers.HealpixSlicer(
                lonCol='hexDitherFieldPerNightRa',
                latCol='hexDitherFieldPerNightDec',
                nside=nside,
                useCache=False)
            slicer['PentagonDitherPerSeason'] = slicers.HealpixSlicer(
                lonCol='pentagonDitherPerSeasonRa',
                latCol='pentagonDitherPerSeasonDec',
                nside=nside,
                useCache=False)
        elif not noDithOnly:
            stackerList['RandomDitherPerNight'] = [
                mafStackers.RandomDitherPerNightStacker(randomSeed=1000)
            ]
            stackerList['RandomDitherFieldPerNight'] = [
                mafStackers.RandomDitherFieldPerNightStacker(randomSeed=1000)
            ]
            stackerList['RandomDitherFieldPerVisit'] = [
                mafStackers.RandomDitherFieldPerVisitStacker(randomSeed=1000)
            ]

            stackerList['RepulsiveRandomDitherPerNight'] = [
                myStackers.RepulsiveRandomDitherPerNightStacker(
                    randomSeed=1000)
            ]
            stackerList['RepulsiveRandomDitherFieldPerNight'] = [
                myStackers.RepulsiveRandomDitherFieldPerNightStacker(
                    randomSeed=1000)
            ]
            stackerList['RepulsiveRandomDitherFieldPerVisit'] = [
                myStackers.RepulsiveRandomDitherFieldPerVisitStacker(
                    randomSeed=1000)
            ]

            slicer['RandomDitherPerNight'] = slicers.HealpixSlicer(
                lonCol='randomDitherPerNightRa',
                latCol='randomDitherPerNightDec',
                nside=nside,
                useCache=False)
            slicer['RandomDitherFieldPerNight'] = slicers.HealpixSlicer(
                lonCol='randomDitherFieldPerNightRa',
                latCol='randomDitherFieldPerNightDec',
                nside=nside,
                useCache=False)
            slicer['RandomDitherFieldPerVisit'] = slicers.HealpixSlicer(
                lonCol='randomDitherFieldPerVisitRa',
                latCol='randomDitherFieldPerVisitDec',
                nside=nside,
                useCache=False)

            slicer['RepulsiveRandomDitherPerNight'] = slicers.HealpixSlicer(
                lonCol='repulsiveRandomDitherPerNightRa',
                latCol='repulsiveRandomDitherPerNightDec',
                nside=nside,
                useCache=False)
            slicer[
                'RepulsiveRandomDitherFieldPerNight'] = slicers.HealpixSlicer(
                    lonCol='repulsiveRandomDitherFieldPerNightRa',
                    latCol='repulsiveRandomDitherFieldPerNightDec',
                    nside=nside,
                    useCache=False)
            slicer[
                'RepulsiveRandomDitherFieldPerVisit'] = slicers.HealpixSlicer(
                    lonCol='repulsiveRandomDitherFieldPerVisitRa',
                    latCol='repulsiveRandomDitherFieldPerVisitDec',
                    nside=nside,
                    useCache=False)

            slicer['FermatSpiralDitherPerNight'] = slicers.HealpixSlicer(
                lonCol='fermatSpiralDitherPerNightRa',
                latCol='fermatSpiralDitherPerNightDec',
                nside=nside,
                useCache=False)
            slicer['FermatSpiralDitherFieldPerNight'] = slicers.HealpixSlicer(
                lonCol='fermatSpiralDitherFieldPerNightRa',
                latCol='fermatSpiralDitherFieldPerNightDec',
                nside=nside,
                useCache=False)
            slicer['FermatSpiralDitherFieldPerVisit'] = slicers.HealpixSlicer(
                lonCol='fermatSpiralDitherFieldPerVisitRa',
                latCol='fermatSpiralDitherFieldPerVisitDec',
                nside=nside,
                useCache=False)

            slicer['SequentialHexDitherPerNight'] = slicers.HealpixSlicer(
                lonCol='hexDitherPerNightRa',
                latCol='hexDitherPerNightDec',
                nside=nside,
                useCache=False)
            slicer['SequentialHexDitherFieldPerNight'] = slicers.HealpixSlicer(
                lonCol='hexDitherFieldPerNightRa',
                latCol='hexDitherFieldPerNightDec',
                nside=nside,
                useCache=False)
            slicer['SequentialHexDitherFieldPerVisit'] = slicers.HealpixSlicer(
                lonCol='hexDitherFieldPerVisitRa',
                latCol='hexDitherFieldPerVisitDec',
                nside=nside,
                useCache=False)

            slicer['PentagonDitherPerSeason'] = slicers.HealpixSlicer(
                lonCol='pentagonDitherPerSeasonRa',
                latCol='pentagonDitherPerSeasonDec',
                nside=nside,
                useCache=False)
            slicer['PentagonDiamondDitherPerSeason'] = slicers.HealpixSlicer(
                lonCol='pentagonDiamondDitherPerSeasonRa',
                latCol='pentagonDiamondDitherPerSeasonDec',
                nside=nside,
                useCache=False)
            slicer['SpiralDitherPerSeason'] = slicers.HealpixSlicer(
                lonCol='spiralDitherPerSeasonRa',
                latCol='spiralDitherPerSeasonDec',
                nside=nside,
                useCache=False)
    os.chdir(path)
    # set up the metric
    if includeDustExtinction:
        # include dust extinction when calculating the co-added depth
        coaddMetric = metrics.ExgalM5(lsstFilter=filterBand)
    else:
        coaddMetric = metrics.Coaddm5Metric()
    dustMap = maps.DustMap(
        interp=False, nside=nside
    )  # include dustMap; actual in/exclusion of dust is handled by the galaxyCountMetric

    # set up the bundle
    coaddBundle = {}
    for dither in slicer:
        if dither in stackerList:
            coaddBundle[dither] = metricBundles.MetricBundle(
                coaddMetric,
                slicer[dither],
                sqlconstraint,
                stackerList=stackerList[dither],
                runName=runName,
                metadata=dither,
                mapsList=[dustMap])
        else:
            coaddBundle[dither] = metricBundles.MetricBundle(
                coaddMetric,
                slicer[dither],
                sqlconstraint,
                runName=runName,
                metadata=dither,
                mapsList=[dustMap])

    # run the analysis
    if includeDustExtinction:
        print('\n# Running coaddBundle with dust extinction ...')
    else:
        print('\n# Running coaddBundle without dust extinction ...')
    cGroup = metricBundles.MetricBundleGroup(coaddBundle,
                                             opsdb,
                                             outDir=outDir,
                                             resultsDb=resultsDb,
                                             saveEarly=False)
    cGroup.runAll()

    # plot and save the data
    plotBundleMaps(path,
                   outDir,
                   coaddBundle,
                   dataLabel='$' + filterBand + '$-band Coadded Depth',
                   filterBand=filterBand,
                   dataName=filterBand + '-band Coadded Depth',
                   skymap=plotSkymap,
                   powerSpectrum=plotPowerSpectrum,
                   cartview=plotCartview,
                   colorMin=unmaskedColorMin,
                   colorMax=unmaskedColorMax,
                   nTicks=nTicks,
                   showPlots=showPlots,
                   saveFigs=saveFigs,
                   outDirNameForSavedFigs='coaddM5Plots_unmaskedBorders')
    print('\n# Done saving plots without border masking.\n')

    os.chdir(path)
    plotHandler = plots.PlotHandler(outDir=outDir,
                                    resultsDb=resultsDb,
                                    thumbnail=False,
                                    savefig=False)

    print(
        '# Number of pixels in the survey region (before masking the border):')
    for dither in coaddBundle:
        print('  ' + dither + ': ' + str(
            len(np.where(coaddBundle[dither].metricValues.mask == False)[0])))

    # save the unmasked data?
    if saveunMaskedCoaddData:
        os.chdir(path + outDir)
        outDir_new = 'unmaskedCoaddData'
        if not os.path.exists(outDir_new):
            os.makedirs(outDir_new)
        saveBundleData_npzFormat(path + outDir + '/' + outDir_new, coaddBundle,
                                 'coaddM5Data_unmasked', filterBand)
    os.chdir(path)

    # mask the edges
    print('\n# Masking the edges for coadd ...')
    coaddBundle = maskingAlgorithmGeneralized(
        coaddBundle,
        plotHandler,
        dataLabel='$' + filterBand + '$-band Coadded Depth',
        nside=nside,
        pixelRadius=pixelRadiusForMasking,
        plotIntermediatePlots=False,
        plotFinalPlots=False,
        printFinalInfo=True)
    # plot and save the masked data
    plotBundleMaps(path,
                   outDir,
                   coaddBundle,
                   dataLabel='$' + filterBand + '$-band Coadded Depth',
                   filterBand=filterBand,
                   dataName=filterBand + '-band Coadded Depth',
                   skymap=plotSkymap,
                   powerSpectrum=plotPowerSpectrum,
                   cartview=plotCartview,
                   colorMin=maskedColorMin,
                   colorMax=maskedColorMax,
                   nTicks=nTicks,
                   showPlots=showPlots,
                   saveFigs=saveFigs,
                   outDirNameForSavedFigs='coaddM5Plots_maskedBorders')
    print('\n# Done saving plots with border masking. \n')
    os.chdir(path)

    # Calculate total power
    summarymetric = metrics.TotalPowerMetric()
    for dither in coaddBundle:
        coaddBundle[dither].setSummaryMetrics(summarymetric)
        coaddBundle[dither].computeSummaryStats()
        print('# Total power for %s case is %f.' %
              (dither, coaddBundle[dither].summaryValues['TotalPower']))
    print('')

    # run the alm analysis
    if almAnalysis:
        almPlots(path,
                 outDir,
                 copy.deepcopy(coaddBundle),
                 nside=nside,
                 filterband=filterBand,
                 raRange=raRange,
                 decRange=decRange,
                 showPlots=showPlots)

    # save the masked data?
    if saveMaskedCoaddData:
        os.chdir(path + outDir)
        outDir_new = 'maskedCoaddData'
        if not os.path.exists(outDir_new):
            os.makedirs(outDir_new)
        saveBundleData_npzFormat(path + outDir + '/' + outDir_new, coaddBundle,
                                 'coaddM5Data_masked', filterBand)
    os.chdir(path)

    #### plot comparison plots
    # set up the directory
    outDir_comp = 'coaddM5ComparisonPlots'
    os.chdir(path + outDir)
    if not os.path.exists(outDir_comp):
        os.makedirs(outDir_comp)
    os.chdir(path + outDir + '/' + outDir_comp)

    # plot for the power spectra
    cl = {}
    for dither in plotColor:
        if dither in coaddBundle:
            cl[dither] = hp.anafast(hp.remove_dipole(
                coaddBundle[dither].metricValues.filled(
                    coaddBundle[dither].slicer.badval)),
                                    lmax=500)
            ell = np.arange(np.size(cl[dither]))
            plt.plot(ell, (cl[dither] * ell * (ell + 1)) / 2.0 / np.pi,
                     color=plotColor[dither],
                     linestyle='-',
                     label=str(dither))
    plt.xlabel(r'$\ell$', fontsize=16)
    plt.ylabel(r'$\ell(\ell+1)C_\ell/(2\pi)$', fontsize=16)
    plt.tick_params(axis='x', labelsize=14)
    plt.tick_params(axis='y', labelsize=14)
    plt.xlim(0, 500)
    fig = plt.gcf()
    fig.set_size_inches(12.5, 10.5)
    leg = plt.legend(fontsize='x-large', labelspacing=0.001)
    for legobj in leg.legendHandles:
        legobj.set_linewidth(4.0)
    plt.savefig('powerspectrum_comparison_all.pdf',
                bbox_inches='tight',
                format='pdf')
    plt.show()

    # create the histogram
    scale = hp.nside2pixarea(nside, degrees=True)

    def tickFormatter(y, pos):
        return '%d' % (y * scale)  # convert pixel count to area

    binsize = 0.01
    for dither in plotColor:
        if dither in coaddBundle:
            ind = np.where(coaddBundle[dither].metricValues.mask == False)[0]
            binAll = int(
                (max(coaddBundle[dither].metricValues.data[ind]) -
                 min(coaddBundle[dither].metricValues.data[ind])) / binsize)
            plt.hist(coaddBundle[dither].metricValues.data[ind],
                     bins=binAll,
                     label=str(dither),
                     histtype='step',
                     color=plotColor[dither])
    ax = plt.gca()
    ymin, ymax = ax.get_ylim()
    nYticks = 10.
    wantedYMax = ymax * scale
    wantedYMax = 10. * np.ceil(float(wantedYMax) / 10.)
    increment = 5. * np.ceil(float(wantedYMax / nYticks) / 5.)
    wantedArray = np.arange(0, wantedYMax, increment)
    ax.yaxis.set_ticks(wantedArray / scale)
    ax.yaxis.set_major_formatter(FuncFormatter(tickFormatter))
    plt.xlabel('$' + filterBand + '$-band Coadded Depth', fontsize=18)
    plt.ylabel('Area (deg$^2$)', fontsize=18)
    plt.tick_params(axis='x', labelsize=18)
    plt.tick_params(axis='y', labelsize=18)
    fig = plt.gcf()
    fig.set_size_inches(12.5, 10.5)
    leg = plt.legend(fontsize='x-large', labelspacing=0.001, loc=2)
    for legobj in leg.legendHandles:
        legobj.set_linewidth(2.0)
    plt.savefig('histogram_comparison.pdf', bbox_inches='tight', format='pdf')
    plt.show()

    # plot power spectra for the separte panel
    totKeys = len(list(coaddBundle.keys()))
    if (totKeys > 1):
        plt.clf()
        nCols = 2
        nRows = int(np.ceil(float(totKeys) / nCols))
        fig, ax = plt.subplots(nRows, nCols)
        plotRow = 0
        plotCol = 0
        for dither in list(plotColor.keys()):
            if dither in list(coaddBundle.keys()):
                ell = np.arange(np.size(cl[dither]))
                ax[plotRow,
                   plotCol].plot(ell,
                                 (cl[dither] * ell * (ell + 1)) / 2.0 / np.pi,
                                 color=plotColor[dither],
                                 label=str(dither))
                if (plotRow == nRows - 1):
                    ax[plotRow, plotCol].set_xlabel(r'$\ell$', fontsize=20)
                ax[plotRow, plotCol].set_ylabel(r'$\ell(\ell+1)C_\ell/(2\pi)$',
                                                fontsize=20)
                ax[plotRow, plotCol].tick_params(axis='x', labelsize=16)
                ax[plotRow, plotCol].tick_params(axis='y', labelsize=16)
                ax[plotRow, plotCol].yaxis.set_major_locator(MaxNLocator(3))
                if (dither != 'NoDither'):
                    ax[plotRow, plotCol].set_ylim(0, 0.0035)
                ax[plotRow, plotCol].set_xlim(0, 500)
                ax[plotRow, plotCol].legend(fontsize='xx-large')
                plotRow += 1
                if (plotRow > nRows - 1):
                    plotRow = 0
                    plotCol += 1
        fig.set_size_inches(20, int(nRows * 30 / 7.))
        plt.savefig('powerspectrum_sepPanels.pdf',
                    bbox_inches='tight',
                    format='pdf')
        plt.show()

    os.chdir(path)
    return coaddBundle, outDir
コード例 #6
0
ファイル: mixedFocal.py プロジェクト: ivezic/ScratchStuff
        v2rafts = np.in1d(raftNames, self.rafts2)
        m5Values[v2rafts] = dataSlice[self.m5v2Col][v2rafts]

        good = np.where( m5Values != 0.)
        return 1.25 * np.log10(np.sum(10.**(.8*m5Values[good])))



opsdb = db.OpsimDatabase('enigma_1189_sqlite.db')
outDir = 'Flipped'
resultsDb = db.ResultsDb(outDir=outDir)

# Grab just the WFD area
propids, propTags = opsdb.fetchPropInfo()
WFDpropid = propTags['WFD']
wfdWhere = utils.createSQLWhere('WFD', propTags)

summaryStats = [metrics.MedianMetric(), metrics.RmsMetric(), metrics.RobustRmsMetric()]

filters = ['u','g']
nside = 64
bundleList = []

years = [1,3,10]
nightWheres = [' and night <= %i' % (year*365.25) for year in years]

#raftConfigs = {'A':{'rafts1':[1,3,4,6,8,10,12,14,16,18,19,21], 'rafts2':[2,5,7,9,11,13,15,17,20]},
#               'B':{'rafts1':[7,8,11,12,13,15,16,17,18,19,20,21], 'rafts2':[1,2,3,4,5,6,9,10,14]},
#               'C':{'rafts1':[2,5,6,7,9,10,11,12,13,15,16,17,20], 'rafts2':[1,3,4,8,14,18,19,21]},
#               'D':{'rafts1':[1,2,3,4,6,8,9,10,12,13,14,16,18,19,20,21], 'rafts2':[5,7,11,15,17]},
#               'E':{'rafts1':[1,2,3,4,5,7,8,9,13,14,15,17,18,19,20,21], 'rafts2':[6,10,11,12,16]},
コード例 #7
0
ファイル: ditherDriver.py プロジェクト: nanchenchen/sims_maf
def mConfig(config, runName, dbDir='.', outputDir='Dithers', nside=128, **kwargs):
    """
    A MAF config for analysis of various dithers applied to an opsim run.

    runName must correspond to the name of the opsim output
        (minus '_sqlite.db', although if added this will be stripped off)

    dbDir is the directory containing the sqlite database
    outputDir is the output directory
    """
    # To use the maf contributed metrics (including galaxy counts metric).
    config.modules = ['mafContrib']

    # Setup Database access
    config.outputDir = outputDir
    if runName.endswith('_sqlite.db'):
        runName = runName.replace('_sqlite.db', '')
    sqlitefile = os.path.join(dbDir, runName + '_sqlite.db')
    config.dbAddress ={'dbAddress':'sqlite:///'+sqlitefile}
    config.opsimName = runName
    config.figformat = 'pdf'

    # Connect to the database to fetch some values we're using to help configure the driver.
    opsimdb = utils.connectOpsimDb(config.dbAddress)

    # Fetch the proposal ID values from the database
    propids, propTags = opsimdb.fetchPropInfo()
    if 'WFD' not in propTags:
        propTags['WFD'] = []

    # Construct a WFD SQL where clause (handles the case of multiple propIDs mapping into "WFD").
    wfdWhere = utils.createSQLWhere('WFD', propTags)
    print 'WFD "where" clause: %s' %(wfdWhere)

    # Filter list, and map of colors (for plots) to filters.
    filters = ['u','g','r','i','z','y']
    colors={'u':'m','g':'b','r':'g','i':'y','z':'r','y':'k'}
    filtorder = {'u':1,'g':2,'r':3,'i':4,'z':5,'y':6}

    summaryStats = {'MeanMetric':{}, 'MedianMetric':{}, 'RmsMetric':{},
                    'PercentileMetric 1':{'metricName':'25th%ile', 'percentile':25},
                    'PercentileMetric 2':{'metricName':'75th%ile', 'percentile':75},
                    'MinMetric':{},
                    'MaxMetric':{},
                    'TotalPowerMetric':{}}

    ditherDict = {}
    ditherDict['NoDither'] = None
    ditherDict['HexDither'] = None
    ditherDict['RandomDither'] = stackers.RandomDitherStacker()
    ditherDict['NightlyRandomDither'] = stackers.NightlyRandomDitherStacker()
    ditherDict['SpiralDither'] = stackers.SpiralDitherStacker()
    ditherDict['NightlySpiralDither'] = stackers.NightlySpiralDitherStacker()
    ditherDict['SequentialHexDither'] = stackers.SequentialHexDitherStacker()
    ditherDict['NightlySequentialHexDither'] = stackers.NightlySequentialHexDitherStacker()
    dithernames = ['NoDither', 'HexDither', 'SequentialHexDither', 'NightlySequentialHexDither',
                   'RandomDither', 'NightlyRandomDither', 'SpiralDither', 'NightlySpiralDither']

    filterlist = ['u', 'g', 'r', 'i', 'z', 'y']

    # Set up sqlconstraint and use this as the outermost loop.
    slicerList = []
    order = 0
    for f in filterlist:
        sqlconstraint = "filter = '%s'" %(f)
        sqlconstraint += ' and %s' %(wfdWhere)
        common_metadata = '%s band WFD' %(f)
        histNum = 0
        # Set up metrics to run for each dither pattern.
        # Set up appropriate slicer and update order/hist label for each ditherpattern, using the same sqlconstraint.
        for i, dithername in enumerate(dithernames):
            if dithername == 'NoDither':
                racol = 'fieldRA'
                deccol = 'fieldDec'
            elif dithername == 'HexDither':
                racol = 'ditheredRA'
                deccol = 'ditheredDec'
            else:
                racol = ditherDict[dithername].colsAdded[0]
                deccol = ditherDict[dithername].colsAdded[1]
            metadata = common_metadata + ' ' + dithername

            metricList = []
            metricList.append(configureMetric('Coaddm5Metric',
                                            plotDict={'units':'Coadded m5'},
                                            summaryStats=summaryStats,
                                            displayDict={'group':'Dithers', 'subgroup':'Coadded Depth',
                                                         'order':i+filtorder[f]*100},
                                            histMerge={'histNum':histNum, 'color':colors[f], 'label':'%s' %(metadata),
                                                         'legendloc':'upper right'}))
            histNum += 1
            metricList.append(configureMetric('CountUniqueMetric', kwargs={'col':'night', 'metricName':'Unique Nights'},
                                               plotDict={'title':'Number of unique nights with observations',
                                                         'cbarFormat':'%d'},
                                                summaryStats=summaryStats,
                                                displayDict={'group':'Dithers', 'subgroup':'Number of nights',
                                                             'order':i+filtorder[f]*100},
                                                histMerge={'histNum':histNum, 'color':colors[f], 'label':'%s' %(metadata),
                                                         'legendloc':'upper right'}))
            histNum += 1
            metricList.append(configureMetric('CountMetric', kwargs={'col':'expMJD',
                                                                 'metricName':'Number of Visits'},
                                          plotDict={'title':'Number of visits',
                                                    'colorMin':0, 'colorMax':300,
                                                    'cbarFormat': '%d'},
                                            summaryStats=summaryStats,
                                            displayDict={'group':'Dithers','subgroup':'Number of visits',
                                                         'order':i+filtorder[f]*100},
                                            histMerge={'histNum':histNum, 'color':colors[f], 'label':'%s' %(metadata),
                                                         'legendloc':'upper right'}))
            histNum += 1
            metricList.append(configureMetric('mafContrib.GalaxyCountsMetric', kwargs={'nside':nside},
                                          summaryStats=summaryStats,
                                            displayDict={'group':'Dithers', 'subgroup':'Galaxy Counts',
                                                              'order':i+filtorder[f]*100},
                                            histMerge={'histNum':histNum, 'color':colors[f], 'label':'%s' %(metadata),
                                                         'legendloc':'upper right'}))
            histNum += 1
            slicer = configureSlicer('HealpixSlicer', kwargs={'nside':nside, 'spatialkey1':racol, 'spatialkey2':deccol},
                                    constraints=[sqlconstraint], metricDict=makeDict(*metricList),
                                    metadata= metadata, metadataVerbatim=True)
            slicerList.append(slicer)

    config.slicers = makeDict(*slicerList)
    return config
コード例 #8
0
ファイル: Ana_Metrics.py プロジェクト: pgris/Make_Cadence
                   zmax=opts.zmax,
                   Nevts=opts.nevts,
                   model=opts.model,
                   version=opts.version,
                   fieldname=opts.fieldname,
                   fieldID=opts.fieldid,
                   opsimrun=opts.opsimrun,
                   runtype=opts.runtype,
                   season=opts.season,
                   sntype=opts.sntype,
                   nrolling=opts.nrolling,
                   percent_merge=opts.percent_merge)

#slicer = slicers.HealpixSlicer(nside=128)

slicer = slicers.OpsimFieldSlicer()
sqlconstraint = utils.createSQLWhere(opts.fieldname, proptags)
mb = metricBundles.MetricBundle(metric, slicer, sqlconstraint)

mbD = {0: mb}

mbg = metricBundles.MetricBundleGroup(mbD,
                                      opsimdb,
                                      outDir=outDir,
                                      resultsDb=resultsDb)

mbg.runAll()

#mbg.plotAll(closefigs=False)
#plt.show()
コード例 #9
0
        v2rafts = np.in1d(raftNames, self.rafts2)
        m5Values[v2rafts] = dataSlice[self.m5v2Col][v2rafts]

        good = np.where( m5Values != 0.)
        return 1.25 * np.log10(np.sum(10.**(.8*m5Values[good])))



opsdb = db.OpsimDatabase('enigma_1189_sqlite.db')
outDir = 'Flipped'
resultsDb = db.ResultsDb(outDir=outDir)

# Grab just the WFD area
propids, propTags = opsdb.fetchPropInfo()
WFDpropid = propTags['WFD']
wfdWhere = utils.createSQLWhere('WFD', propTags)

summaryStats = [metrics.MedianMetric(), metrics.RmsMetric(), metrics.RobustRmsMetric()]

filters = ['u','g']
nside = 64
bundleList = []

years = [1,3,10]
nightWheres = [' and night <= %i' % (year*365.25) for year in years]

#raftConfigs = {'A':{'rafts1':[1,3,4,6,8,10,12,14,16,18,19,21], 'rafts2':[2,5,7,9,11,13,15,17,20]},
#               'B':{'rafts1':[7,8,11,12,13,15,16,17,18,19,20,21], 'rafts2':[1,2,3,4,5,6,9,10,14]},
#               'C':{'rafts1':[2,5,6,7,9,10,11,12,13,15,16,17,20], 'rafts2':[1,3,4,8,14,18,19,21]},
#               'D':{'rafts1':[1,2,3,4,6,8,9,10,12,13,14,16,18,19,20,21], 'rafts2':[5,7,11,15,17]},
#               'E':{'rafts1':[1,2,3,4,5,7,8,9,13,14,15,17,18,19,20,21], 'rafts2':[6,10,11,12,16]},
コード例 #10
0
def makeBundleList(dbFile, runName=None, nside=64, benchmark='design',
                   lonCol='fieldRA', latCol='fieldDec', seeingCol='FWHMgeom'):
    """
    make a list of metricBundle objects to look at the scientific performance
    of an opsim run.
    """

    # List to hold everything we're going to make
    bundleList = []

    # List to hold metrics that shouldn't be saved
    noSaveBundleList = []

    # Connect to the databse
    opsimdb = utils.connectOpsimDb(dbFile)
    if runName is None:
        runName = os.path.basename(dbFile).replace('_sqlite.db', '')

    # Fetch the proposal ID values from the database
    propids, propTags = opsimdb.fetchPropInfo()

    # Fetch the telescope location from config
    lat, lon, height = opsimdb.fetchLatLonHeight()

    # Add metadata regarding dithering/non-dithered.
    commonname = ''.join([a for a in lonCol if a in latCol])
    if commonname == 'field':
        slicermetadata = ' (non-dithered)'
    else:
        slicermetadata = ' (%s)' % (commonname)

    # Construct a WFD SQL where clause so multiple propIDs can query by WFD:
    wfdWhere = utils.createSQLWhere('WFD', propTags)
    print '#FYI: WFD "where" clause: %s' % (wfdWhere)
    ddWhere = utils.createSQLWhere('DD', propTags)
    print '#FYI: DD "where" clause: %s' % (ddWhere)

    # Set up benchmark values, scaled to length of opsim run.
    runLength = opsimdb.fetchRunLength()
    if benchmark == 'requested':
        # Fetch design values for seeing/skybrightness/single visit depth.
        benchmarkVals = utils.scaleBenchmarks(runLength, benchmark='design')
        # Update nvisits with requested visits from config files.
        benchmarkVals['nvisits'] = opsimdb.fetchRequestedNvisits(propId=propTags['WFD'])
        # Calculate expected coadded depth.
        benchmarkVals['coaddedDepth'] = utils.calcCoaddedDepth(benchmarkVals['nvisits'],
                                                               benchmarkVals['singleVisitDepth'])
    elif (benchmark == 'stretch') or (benchmark == 'design'):
        # Calculate benchmarks for stretch or design.
        benchmarkVals = utils.scaleBenchmarks(runLength, benchmark=benchmark)
        benchmarkVals['coaddedDepth'] = utils.calcCoaddedDepth(benchmarkVals['nvisits'],
                                                               benchmarkVals['singleVisitDepth'])
    else:
        raise ValueError('Could not recognize benchmark value %s, use design, stretch or requested.'
                         % (benchmark))
    # Check that nvisits is not set to zero (for very short run length).
    for f in benchmarkVals['nvisits']:
        if benchmarkVals['nvisits'][f] == 0:
            print 'Updating benchmark nvisits value in %s to be nonzero' % (f)
            benchmarkVals['nvisits'][f] = 1

    # Set values for min/max range of nvisits for All/WFD and DD plots. These are somewhat arbitrary.
    nvisitsRange = {}
    nvisitsRange['all'] = {'u': [20, 80], 'g': [50, 150], 'r': [100, 250],
                           'i': [100, 250], 'z': [100, 300], 'y': [100, 300]}
    nvisitsRange['DD'] = {'u': [6000, 10000], 'g': [2500, 5000], 'r': [5000, 8000],
                          'i': [5000, 8000], 'z': [7000, 10000], 'y': [5000, 8000]}
    # Scale these ranges for the runLength.
    scale = runLength / 10.0
    for prop in nvisitsRange:
        for f in nvisitsRange[prop]:
            for i in [0, 1]:
                nvisitsRange[prop][f][i] = int(np.floor(nvisitsRange[prop][f][i] * scale))

    # Filter list, and map of colors (for plots) to filters.
    filters = ['u', 'g', 'r', 'i', 'z', 'y']
    colors = {'u': 'cyan', 'g': 'g', 'r': 'y', 'i': 'r', 'z': 'm', 'y': 'k'}
    filtorder = {'u': 1, 'g': 2, 'r': 3, 'i': 4, 'z': 5, 'y': 6}

    # Easy way to run through all fi

    # Set up a list of common summary stats
    commonSummary = [metrics.MeanMetric(), metrics.RobustRmsMetric(), metrics.MedianMetric(),
                     metrics.PercentileMetric(metricName='25th%ile', percentile=25),
                     metrics.PercentileMetric(metricName='75th%ile', percentile=75),
                     metrics.MinMetric(), metrics.MaxMetric()]
    allStats = commonSummary

    # Set up some 'group' labels
    reqgroup = 'A: Required SRD metrics'
    depthgroup = 'B: Depth per filter'
    uniformitygroup = 'C: Uniformity'
    airmassgroup = 'D: Airmass distribution'
    seeinggroup = 'E: Seeing distribution'
    transgroup = 'F: Transients'
    sngroup = 'G: SN Ia'
    altAzGroup = 'H: Alt Az'
    rangeGroup = 'I: Range of Dates'
    intergroup = 'J: Inter-Night'
    phaseGroup = 'K: Max Phase Gap'
    NEOGroup = 'L: NEO Detection'

    # Set up an object to track the metricBundles that we want to combine into merged plots.
    mergedHistDict = {}

    # Set the histogram merge function.
    mergeFunc = plots.HealpixHistogram()

    keys = ['NVisits', 'coaddm5', 'NormEffTime', 'Minseeing', 'seeingAboveLimit', 'minAirmass',
            'fracAboveAirmass']

    for key in keys:
        mergedHistDict[key] = plots.PlotBundle(plotFunc=mergeFunc)

    ##
    # Calculate the fO metrics for all proposals and WFD only.
    order = 0
    for prop in ('All prop', 'WFD only'):
        if prop == 'All prop':
            metadata = 'All Visits' + slicermetadata
            sqlconstraint = ''
        if prop == 'WFD only':
            metadata = 'WFD only' + slicermetadata
            sqlconstraint = '%s' % (wfdWhere)
        # Configure the count metric which is what is used for f0 slicer.
        m1 = metrics.CountMetric(col='expMJD', metricName='fO')
        plotDict = {'xlabel': 'Number of Visits', 'Asky': benchmarkVals['Area'],
                    'Nvisit': benchmarkVals['nvisitsTotal'], 'xMin': 0, 'xMax': 1500}
        summaryMetrics = [metrics.fOArea(nside=nside, norm=False, metricName='fOArea: Nvisits (#)',
                                         Asky=benchmarkVals['Area'], Nvisit=benchmarkVals['nvisitsTotal']),
                          metrics.fOArea(nside=nside, norm=True, metricName='fOArea: Nvisits/benchmark',
                                         Asky=benchmarkVals['Area'], Nvisit=benchmarkVals['nvisitsTotal']),
                          metrics.fONv(nside=nside, norm=False, metricName='fONv: Area (sqdeg)',
                                       Asky=benchmarkVals['Area'], Nvisit=benchmarkVals['nvisitsTotal']),
                          metrics.fONv(nside=nside, norm=True, metricName='fONv: Area/benchmark',
                                       Asky=benchmarkVals['Area'], Nvisit=benchmarkVals['nvisitsTotal'])]
        caption = 'The FO metric evaluates the overall efficiency of observing. '
        caption += ('fOArea: Nvisits = %.1f sq degrees receive at least this many visits out of %d. '
                    % (benchmarkVals['Area'], benchmarkVals['nvisitsTotal']))
        caption += ('fONv: Area = this many square degrees out of %.1f receive at least %d visits.'
                    % (benchmarkVals['Area'], benchmarkVals['nvisitsTotal']))
        displayDict = {'group': reqgroup, 'subgroup': 'F0', 'displayOrder': order, 'caption': caption}
        order += 1
        slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol)

        bundle = metricBundles.MetricBundle(m1, slicer, sqlconstraint, plotDict=plotDict,
                                            displayDict=displayDict, summaryMetrics=summaryMetrics,
                                            plotFuncs=[plots.FOPlot()],
                                            runName=runName, metadata=metadata)
        bundleList.append(bundle)

    ###
    # Calculate the Rapid Revisit Metrics.
    order = 0
    metadata = 'All Visits' + slicermetadata
    sqlconstraint = ''
    dTmin = 40.0  # seconds
    dTmax = 30.0  # minutes
    minNvisit = 100
    pixArea = float(hp.nside2pixarea(nside, degrees=True))
    scale = pixArea * hp.nside2npix(nside)
    cutoff1 = 0.15
    extraStats1 = [metrics.FracBelowMetric(cutoff=cutoff1, scale=scale, metricName='Area (sq deg)')]
    extraStats1.extend(commonSummary)
    slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol)
    m1 = metrics.RapidRevisitMetric(metricName='RapidRevisitUniformity',
                                    dTmin=dTmin / 60.0 / 60.0 / 24.0, dTmax=dTmax / 60.0 / 24.0,
                                    minNvisits=minNvisit)

    plotDict = {'xMin': 0, 'xMax': 1}
    summaryStats = extraStats1
    caption = 'Deviation from uniformity for short revisit timescales, between %s and %s seconds, ' % (
        dTmin, dTmax)
    caption += 'for pointings with at least %d visits in this time range. ' % (minNvisit)
    caption += 'Summary statistic "Area" below indicates the area on the sky which has a '
    caption += 'deviation from uniformity of < %.2f.' % (cutoff1)
    displayDict = {'group': reqgroup, 'subgroup': 'Rapid Revisit', 'displayOrder': order,
                   'caption': caption}
    bundle = metricBundles.MetricBundle(m1, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1

    m2 = metrics.NRevisitsMetric(dT=dTmax)
    plotDict = {'xMin': 0, 'xMax': 1000, 'logScale': True}
    cutoff2 = 800
    extraStats2 = [metrics.FracAboveMetric(cutoff=cutoff2, scale=scale, metricName='Area (sq deg)')]
    extraStats2.extend(commonSummary)
    caption = 'Number of consecutive visits with return times faster than %.1f minutes, ' % dTmax
    caption += 'in any filter, all proposals. '
    caption += 'Summary statistic "Area" below indicates the area on the sky which has more than '
    caption += '%d revisits within this time window.' % (cutoff2)
    summaryStats = extraStats2
    displayDict = {'group': reqgroup, 'subgroup': 'Rapid Revisit', 'displayOrder': order,
                   'caption': caption}
    bundle = metricBundles.MetricBundle(m2, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1
    m3 = metrics.NRevisitsMetric(dT=dTmax, normed=True)
    plotDict = {'xMin': 0, 'xMax': 1, 'cbarFormat': '%.1f'}
    cutoff3 = 0.6
    extraStats3 = [metrics.FracAboveMetric(cutoff=cutoff3, scale=scale, metricName='Area (sq deg)')]
    extraStats3.extend(commonSummary)
    summaryStats = extraStats3
    caption = 'Fraction of total visits where consecutive visits have return times faster '
    caption += 'than %.1f minutes, in any filter, all proposals. ' % (dTmax)
    caption += 'Summary statistic "Area" below indicates the area on the sky which has more '
    caption += 'than %d revisits within this time window.' % (cutoff3)
    displayDict = {'group': reqgroup, 'subgroup': 'Rapid Revisit', 'displayOrder': order,
                   'caption': caption}
    bundle = metricBundles.MetricBundle(m3, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1

    # And add a histogram of the time between quick revisits.
    binMin = 0
    binMax = 120.
    binsize = 3.
    bins_metric = np.arange(binMin / 60.0 / 24.0, (binMax + binsize) / 60. / 24., binsize / 60. / 24.)
    bins_plot = bins_metric * 24.0 * 60.0
    m1 = metrics.TgapsMetric(bins=bins_metric, metricName='dT visits')
    plotDict = {'bins': bins_plot, 'xlabel': 'dT (minutes)'}
    caption = ('Histogram of the time between consecutive revisits (<%.1f minutes), over entire sky.'
               % (binMax))
    displayDict = {'group': reqgroup, 'subgroup': 'Rapid Revisit', 'order': order,
                   'caption': caption}
    slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol)
    plotFunc = plots.SummaryHistogram()
    bundle = metricBundles.MetricBundle(m1, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, runName=runName,
                                        metadata=metadata, plotFuncs=[plotFunc])
    bundleList.append(bundle)
    order += 1

    ##
    # Trigonometric parallax and proper motion @ r=20 and r=24
    slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol)
    sqlconstraint = ''
    order = 0
    metric = metrics.ParallaxMetric(metricName='Parallax 20', rmag=20, seeingCol=seeingCol)
    summaryStats = allStats
    plotDict = {'cbarFormat': '%.1f', 'xMin': 0, 'xMax': 3}
    displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order,
                   'caption': 'Parallax precision at r=20. (without refraction).'}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1
    metric = metrics.ParallaxMetric(metricName='Parallax 24', rmag=24, seeingCol=seeingCol)
    plotDict = {'cbarFormat': '%.1f', 'xMin': 0, 'xMax': 10}
    displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order,
                   'caption': 'Parallax precision at r=24. (without refraction).'}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1
    metric = metrics.ParallaxMetric(metricName='Parallax Normed', rmag=24, normalize=True,
                                    seeingCol=seeingCol)
    plotDict = {'xMin': 0.5, 'xMax': 1.0}
    displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order,
                   'caption':
                   'Normalized parallax (normalized to optimum observation cadence, 1=optimal).'}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1
    metric = metrics.ParallaxCoverageMetric(metricName='Parallax Coverage 20', rmag=20, seeingCol=seeingCol)
    plotDict = {}
    caption = "Parallax factor coverage for an r=20 star (0 is bad, 0.5-1 is good). "
    caption += "One expects the parallax factor coverage to vary because stars on the ecliptic "
    caption += "can be observed when they have no parallax offset while stars at the pole are always "
    caption += "offset by the full parallax offset."""
    displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order,
                   'caption': caption}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1
    metric = metrics.ParallaxCoverageMetric(metricName='Parallax Coverage 24', rmag=24, seeingCol=seeingCol)
    plotDict = {}
    caption = "Parallax factor coverage for an r=24 star (0 is bad, 0.5-1 is good). "
    caption += "One expects the parallax factor coverage to vary because stars on the ecliptic "
    caption += "can be observed when they have no parallax offset while stars at the pole are always "
    caption += "offset by the full parallax offset."""
    displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order,
                   'caption': caption}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1
    metric = metrics.ParallaxHADegenMetric(metricName='Parallax-DCR degeneracy 20', rmag=20,
                                           seeingCol=seeingCol)
    plotDict = {}
    caption = 'Correlation between parallax offset magnitude and hour angle an r=20 star.'
    caption += ' (0 is good, near -1 or 1 is bad).'
    displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order,
                   'caption': caption}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1
    metric = metrics.ParallaxHADegenMetric(metricName='Parallax-DCR degeneracy 24', rmag=24,
                                           seeingCol=seeingCol)
    plotDict = {}
    caption = 'Correlation between parallax offset magnitude and hour angle an r=24 star.'
    caption += ' (0 is good, near -1 or 1 is bad).'
    displayDict = {'group': reqgroup, 'subgroup': 'Parallax', 'order': order,
                   'caption': caption}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1

    metric = metrics.ProperMotionMetric(metricName='Proper Motion 20', rmag=20, seeingCol=seeingCol)

    summaryStats = allStats
    plotDict = {'xMin': 0, 'xMax': 3}
    displayDict = {'group': reqgroup, 'subgroup': 'Proper Motion', 'order': order,
                   'caption': 'Proper Motion precision at r=20.'}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1
    metric = metrics.ProperMotionMetric(rmag=24, metricName='Proper Motion 24', seeingCol=seeingCol)
    summaryStats = allStats
    plotDict = {'xMin': 0, 'xMax': 10}
    displayDict = {'group': reqgroup, 'subgroup': 'Proper Motion', 'order': order,
                   'caption': 'Proper Motion precision at r=24.'}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1
    metric = metrics.ProperMotionMetric(rmag=24, normalize=True, metricName='Proper Motion Normed',
                                        seeingCol=seeingCol)
    plotDict = {'xMin': 0.2, 'xMax': 0.7}
    caption = 'Normalized proper motion at r=24. '
    caption += '(normalized to optimum observation cadence - start/end. 1=optimal).'
    displayDict = {'group': reqgroup, 'subgroup': 'Proper Motion', 'order': order,
                   'caption': caption}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, summaryMetrics=summaryStats,
                                        runName=runName, metadata=metadata)
    bundleList.append(bundle)
    order += 1

    ##
    # Calculate the time uniformity in each filter, for each year.
    order = 0

    slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol)
    plotFuncs = [plots.TwoDMap()]
    step = 0.5
    bins = np.arange(0, 365.25 * 10 + 40, 40) - step
    metric = metrics.AccumulateUniformityMetric(bins=bins)
    plotDict = {'xlabel': 'Night (days)', 'xextent': [bins.min(
    ) + step, bins.max() + step], 'cbarTitle': 'Uniformity'}
    for f in filters:
        sqlconstraint = 'filter = "%s"' % (f)
        caption = 'Deviation from uniformity in %s band. ' % f
        caption += 'Northern Healpixels are at the top of the image.'
        caption += '(0=perfectly uniform, 1=perfectly nonuniform).'
        displayDict = {'group': uniformitygroup, 'subgroup': 'per night',
                       'order': filtorder[f], 'caption': caption}
        metadata = '%s band' % (f) + slicermetadata
        bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                            displayDict=displayDict, runName=runName, metadata=metadata,
                                            plotFuncs=plotFuncs)
        noSaveBundleList.append(bundle)

    ##
    # Depth metrics.
    slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol)
    for f in filters:
        propCaption = '%s band, all proposals %s' % (f, slicermetadata)
        sqlconstraint = 'filter = "%s"' % (f)
        metadata = '%s band' % (f) + slicermetadata
        # Number of visits.
        metric = metrics.CountMetric(col='expMJD', metricName='NVisits')
        plotDict = {'xlabel': 'Number of visits',
                    'xMin': nvisitsRange['all'][f][0],
                    'xMax': nvisitsRange['all'][f][1],
                    'colorMin': nvisitsRange['all'][f][0],
                    'colorMax': nvisitsRange['all'][f][1],
                    'binsize': 5,
                    'logScale': True, 'nTicks': 4, 'colorMin': 1}
        summaryStats = allStats
        displayDict = {'group': depthgroup, 'subgroup': 'Nvisits', 'order': filtorder[f],
                       'caption': 'Number of visits in filter %s, %s.' % (f, propCaption)}
        histMerge = {'color': colors[f], 'label': '%s' % (f),
                     'binsize': 5,
                     'xMin': nvisitsRange['all'][f][0], 'xMax': nvisitsRange['all'][f][1],
                     'legendloc': 'upper right'}
        bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                            displayDict=displayDict, runName=runName, metadata=metadata,
                                            summaryMetrics=summaryStats)
        mergedHistDict['NVisits'].addBundle(bundle, plotDict=histMerge)
        bundleList.append(bundle)
        # Coadded depth.
        metric = metrics.Coaddm5Metric()
        plotDict = {'zp': benchmarkVals['coaddedDepth'][f], 'xMin': -0.8, 'xMax': 0.8,
                    'xlabel': 'coadded m5 - %.1f' % benchmarkVals['coaddedDepth'][f]}
        summaryStats = allStats
        histMerge = {'legendloc': 'upper right', 'color': colors[f], 'label': '%s' % f, 'binsize': .02,
                     'xlabel': 'coadded m5 - benchmark value'}
        caption = ('Coadded depth in filter %s, with %s value subtracted (%.1f), %s. '
                   % (f, benchmark, benchmarkVals['coaddedDepth'][f], propCaption))
        caption += 'More positive numbers indicate fainter limiting magnitudes.'
        displayDict = {'group': depthgroup, 'subgroup': 'Coadded Depth',
                       'order': filtorder[f], 'caption': caption}
        bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                            displayDict=displayDict, runName=runName, metadata=metadata,
                                            summaryMetrics=summaryStats)
        mergedHistDict['coaddm5'].addBundle(bundle, plotDict=histMerge)
        bundleList.append(bundle)
        # Effective time.
        metric = metrics.TeffMetric(metricName='Normalized Effective Time', normed=True,
                                    fiducialDepth=benchmarkVals['singleVisitDepth'])
        plotDict = {'xMin': 0.1, 'xMax': 1.1}
        summaryStats = allStats
        histMerge = {'legendLoc': 'upper right', 'color': colors[f], 'label': '%s' % f, 'binsize': 0.02}
        caption = ('"Time Effective" in filter %s, calculated with fiducial single-visit depth of %s mag. '
                   % (f, benchmarkVals['singleVisitDepth'][f]))
        caption += 'Normalized by the fiducial time effective, if every observation was at '
        caption += 'the fiducial depth.'
        displayDict = {'group': depthgroup, 'subgroup': 'Time Eff.',
                       'order': filtorder[f], 'caption': caption}
        bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                            displayDict=displayDict, runName=runName, metadata=metadata,
                                            summaryMetrics=summaryStats)
        mergedHistDict['NormEffTime'].addBundle(bundle, plotDict=histMerge)
        bundleList.append(bundle)

    # Put in a z=0.5 Type Ia SN, based on Cambridge 2015 workshop notebook.
    # Check for 1) detection in any band, 2) detection on the rise in any band,
    # 3) good characterization
    peaks = {'uPeak': 25.9, 'gPeak': 23.6, 'rPeak': 22.6, 'iPeak': 22.7, 'zPeak': 22.7, 'yPeak': 22.8}
    peakTime = 15.
    transDuration = peakTime + 30.  # Days
    metric = metrics.TransientMetric(riseSlope=-2. / peakTime, declineSlope=1.4 / 30.0,
                                     transDuration=transDuration, peakTime=peakTime,
                                     surveyDuration=runLength,
                                     metricName='SNDetection', **peaks)
    caption = 'Fraction of z=0.5 type Ia SN that are detected in any filter'
    displayDict = {'group': transgroup, 'subgroup': 'Detected', 'caption': caption}
    sqlconstraint = ''
    metadata = '' + slicermetadata
    plotDict = {}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, runName=runName, metadata=metadata)
    bundleList.append(bundle)

    metric = metrics.TransientMetric(riseSlope=-2. / peakTime, declineSlope=1.4 / 30.0,
                                     transDuration=transDuration, peakTime=peakTime,
                                     surveyDuration=runLength,
                                     nPrePeak=1, metricName='SNAlert', **peaks)
    caption = 'Fraction of z=0.5 type Ia SN that are detected pre-peak in any filter'
    displayDict = {'group': transgroup, 'subgroup': 'Detected on the rise', 'caption': caption}
    plotDict = {}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, runName=runName, metadata=metadata)
    bundleList.append(bundle)

    metric = metrics.TransientMetric(riseSlope=-2. / peakTime, declineSlope=1.4 / 30.,
                                     transDuration=transDuration, peakTime=peakTime,
                                     surveyDuration=runLength, metricName='SNLots',
                                     nFilters=3, nPrePeak=3, nPerLC=2, **peaks)
    caption = 'Fraction of z=0.5 type Ia SN that are observed 6 times, 3 pre-peak, '
    caption += '3 post-peak, with observations in 3 filters'
    displayDict = {'group': transgroup, 'subgroup': 'Well observed', 'caption': caption}
    sqlconstraint = 'filter="r" or filter="g" or filter="i" or filter="z" '
    plotDict = {}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, runName=runName, metadata=metadata)
    bundleList.append(bundle)

    # Good seeing in r/i band metrics, including in first/second years.
    order = 0
    for tcolor, tlabel, timespan in zip(['k', 'g', 'r'], ['10 years', '1 year', '2 years'],
                                        ['', ' and night<=365', ' and night<=730']):
        order += 1
        for f in (['r', 'i']):
            sqlconstraint = 'filter = "%s" %s' % (f, timespan)
            propCaption = '%s band, all proposals %s, over %s.' % (f, slicermetadata, tlabel)
            metadata = '%s band, %s' % (f, tlabel) + slicermetadata
            seeing_limit = 0.7
            airmass_limit = 1.2
            metric = metrics.MinMetric(col=seeingCol)
            summaryStats = allStats
            plotDict = {'xMin': 0.35, 'xMax': 1.5, 'color': tcolor}
            displayDict = {'group': seeinggroup, 'subgroup': 'Best Seeing',
                           'order': filtorder[f] * 100 + order,
                           'caption': 'Minimum FWHMgeom values in %s.' % (propCaption)}
            histMerge = {'label': '%s %s' % (f, tlabel), 'color': tcolor,
                         'binsize': 0.03, 'xMin': 0.35, 'xMax': 1.5, 'legendloc': 'upper right'}
            bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                                displayDict=displayDict, runName=runName, metadata=metadata,
                                                summaryMetrics=summaryStats)
            mergedHistDict['Minseeing'].addBundle(bundle, plotDict=histMerge)
            bundleList.append(bundle)

            metric = metrics.FracAboveMetric(col=seeingCol, cutoff=seeing_limit)
            summaryStats = allStats
            plotDict = {'xMin': 0, 'xMax': 1.1, 'color': tcolor}
            displayDict = {'group': seeinggroup, 'subgroup': 'Good seeing fraction',
                           'order': filtorder[f] * 100 + order,
                           'caption': 'Fraction of total images with FWHMgeom worse than %.1f, in %s'
                           % (seeing_limit, propCaption)}
            histMerge = {'color': tcolor, 'label': '%s %s' % (f, tlabel),
                         'binsize': 0.05, 'legendloc': 'upper right'}
            bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                                displayDict=displayDict, runName=runName, metadata=metadata,
                                                summaryMetrics=summaryStats)
            mergedHistDict['seeingAboveLimit'].addBundle(bundle, plotDict=histMerge)
            bundleList.append(bundle)

            metric = metrics.MinMetric(col='airmass')
            plotDict = {'xMin': 1, 'xMax': 1.5, 'color': tcolor}
            summaryStats = allStats
            displayDict = {'group': airmassgroup, 'subgroup': 'Best Airmass',
                           'order': filtorder[f] * 100 + order, 'caption':
                           'Minimum airmass in %s.' % (propCaption)}
            histMerge = {'color': tcolor, 'label': '%s %s' % (f, tlabel),
                         'binsize': 0.03, 'legendloc': 'upper right'}
            bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                                displayDict=displayDict, runName=runName, metadata=metadata,
                                                summaryMetrics=summaryStats)
            mergedHistDict['minAirmass'].addBundle(bundle, plotDict=histMerge)
            bundleList.append(bundle)

            metric = metrics.FracAboveMetric(col='airmass', cutoff=airmass_limit)
            plotDict = {'xMin': 0, 'xMax': 1, 'color': tcolor}
            summaryStats = allStats
            displayDict = {'group': airmassgroup, 'subgroup': 'Low airmass fraction',
                           'order': filtorder[f] * 100 + order, 'caption':
                           'Fraction of total images with airmass higher than %.2f, in %s'
                           % (airmass_limit, propCaption)}
            histMerge = {'color': tcolor, 'label': '%s %s' % (
                f, tlabel), 'binsize': 0.05, 'legendloc': 'upper right'}

            bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                                displayDict=displayDict, runName=runName, metadata=metadata,
                                                summaryMetrics=summaryStats)
            mergedHistDict['fracAboveAirmass'].addBundle(bundle, plotDict=histMerge)
            bundleList.append(bundle)

# SNe metrics from UK workshop.
    peaks = {'uPeak': 25.9, 'gPeak': 23.6, 'rPeak': 22.6, 'iPeak': 22.7, 'zPeak': 22.7, 'yPeak': 22.8}
    peakTime = 15.
    transDuration = peakTime + 30.  # Days
    metric = metrics.TransientMetric(riseSlope=-2. / peakTime, declineSlope=1.4 / 30.0,
                                     transDuration=transDuration, peakTime=peakTime,
                                     surveyDuration=runLength,
                                     metricName='SNDetection', **peaks)
    caption = 'Fraction of z=0.5 type Ia SN that are detected at any point in their light curve in any filter'
    displayDict = {'group': sngroup, 'subgroup': 'Detected', 'caption': caption}
    sqlconstraint = ''
    plotDict = {}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, runName=runName)
    bundleList.append(bundle)

    metric = metrics.TransientMetric(riseSlope=-2. / peakTime, declineSlope=1.4 / 30.0,
                                     transDuration=transDuration, peakTime=peakTime,
                                     surveyDuration=runLength,
                                     nPrePeak=1, metricName='SNAlert', **peaks)
    caption = 'Fraction of z=0.5 type Ia SN that are detected pre-peak in any filter'
    displayDict = {'group': sngroup, 'subgroup': 'Detected on the rise', 'caption': caption}
    plotDict = {}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, runName=runName)
    bundleList.append(bundle)

    metric = metrics.TransientMetric(riseSlope=-2. / peakTime, declineSlope=1.4 / 30.,
                                     transDuration=transDuration, peakTime=peakTime,
                                     surveyDuration=runLength, metricName='SNLots',
                                     nFilters=3, nPrePeak=3, nPerLC=2, **peaks)
    caption = 'Fraction of z=0.5 type Ia SN that are observed 6 times, 3 pre-peak, '
    caption += '3 post-peak, with observations in 3 filters'
    displayDict = {'group': sngroup, 'subgroup': 'Well observed', 'caption': caption}
    sqlconstraint = 'filter="r" or filter="g" or filter="i" or filter="z" '
    plotDict = {}
    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, runName=runName)
    bundleList.append(bundle)

    propIDOrderDict = {}
    orderVal = 100
    for propID in propids:
        propIDOrderDict[propID] = orderVal
        orderVal += 100

    # Full range of dates:
    metric = metrics.FullRangeMetric(col='expMJD')
    plotFuncs = [plots.HealpixSkyMap(), plots.HealpixHistogram()]
    caption = 'Time span of survey.'
    sqlconstraint = ''
    plotDict = {}
    displayDict = {'group': rangeGroup, 'caption': caption}

    bundle = metricBundles.MetricBundle(metric, slicer, sqlconstraint, plotDict=plotDict,
                                        displayDict=displayDict, runName=runName)
    bundleList.append(bundle)
    for f in filters:
        for propid in propids:
            displayDict = {'group': rangeGroup, 'subgroup': propids[propid], 'caption': caption,
                           'order': filtorder[f]}
            md = '%s, %s' % (f, propids[propid])
            sql = 'filter="%s" and propID=%i' % (f, propid)
            bundle = metricBundles.MetricBundle(metric, slicer, sql, plotDict=plotDict,
                                                metadata=md, plotFuncs=plotFuncs,
                                                displayDict=displayDict, runName=runName)
            bundleList.append(bundle)

    # Alt az plots
    slicer = slicers.HealpixSlicer(nside=64, latCol='zenithDistance', lonCol='azimuth', useCache=False)
    metric = metrics.CountMetric('expMJD', metricName='Nvisits as function of Alt/Az')
    plotDict = {}
    plotFuncs = [plots.LambertSkyMap()]
    displayDict = {'group': altAzGroup, 'caption': 'Alt Az pointing distribution'}
    for f in filters:
        for propid in propids:
            displayDict = {'group': altAzGroup, 'subgroup': propids[propid],
                           'caption': 'Alt Az pointing distribution',
                           'order': filtorder[f]}
            md = '%s, %s' % (f, propids[propid])
            sql = 'filter="%s" and propID=%i' % (f, propid)
            bundle = metricBundles.MetricBundle(metric, slicer, sql, plotDict=plotDict,
                                                plotFuncs=plotFuncs, metadata=md,
                                                displayDict=displayDict, runName=runName)
            bundleList.append(bundle)

    sql = ''
    md = 'all observations'
    displayDict = {'group': altAzGroup, 'subgroup': 'All Observations',
                   'caption': 'Alt Az pointing distribution'}
    bundle = metricBundles.MetricBundle(metric, slicer, sql, plotDict=plotDict,
                                        plotFuncs=plotFuncs, metadata=md,
                                        displayDict=displayDict, runName=runName)
    bundleList.append(bundle)

    # Median inter-night gap (each and all filters)
    slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol)
    metric = metrics.InterNightGapsMetric(metricName='Median Inter-Night Gap')
    sqls = ['filter = "%s"' % f for f in filters]
    orders = [filtorder[f] for f in filters]
    orders.append(0)
    sqls.append('')
    for sql, order in zip(sqls, orders):
        displayDict = {'group': intergroup, 'subgroup': 'Median Gap', 'caption': 'Median gap between days',
                       'order': order}
        bundle = metricBundles.MetricBundle(metric, slicer, sql, displayDict=displayDict, runName=runName)
        bundleList.append(bundle)

    # Max inter-night gap in r and all bands
    dslicer = slicers.HealpixSlicer(nside=nside, lonCol='ditheredRA', latCol='ditheredDec')
    metric = metrics.InterNightGapsMetric(metricName='Max Inter-Night Gap', reduceFunc=np.max)

    plotDict = {'percentileClip': 95.}
    for sql, order in zip(sqls, orders):
        displayDict = {'group': intergroup, 'subgroup': 'Max Gap', 'caption': 'Max gap between nights',
                       'order': order}
        bundle = metricBundles.MetricBundle(metric, dslicer, sql, displayDict=displayDict,
                                            plotDict=plotDict, runName=runName)
        bundleList.append(bundle)

    # largest phase gap for periods
    periods = [0.1, 1.0, 10., 100.]
    sqls = {'u': 'filter = "u"', 'r': 'filter="r"',
            'g,r,i,z': 'filter="g" or filter="r" or filter="i" or filter="z"',
            'all': ''}

    for sql in sqls.keys():
        for period in periods:
            displayDict = {'group': phaseGroup,
                           'subgroup': 'period=%.2f days, filter=%s' % (period, sql),
                           'caption': 'Maximum phase gaps'}
            metric = metrics.PhaseGapMetric(nPeriods=1, periodMin=period, periodMax=period,
                                            metricName='PhaseGap, %.1f' % period)
            bundle = metricBundles.MetricBundle(metric, slicer, sqls[sql],
                                                displayDict=displayDict, runName=runName)
            bundleList.append(bundle)

    # NEO XY plots
    slicer = slicers.UniSlicer()
    metric = metrics.PassMetric(metricName='NEODistances')
    stacker = stackers.NEODistStacker()
    stacker2 = stackers.EclipticStacker()
    for f in filters:
        plotFunc = plots.NeoDistancePlotter(eclipMax=10., eclipMin=-10.)
        caption = 'Observations within 10 degrees of the ecliptic. Distance an H=22 NEO would be detected'
        displayDict = {'group': NEOGroup, 'subgroup': 'xy', 'order': filtorder[f],
                       'caption': caption}
        plotDict = {}
        sqlconstraint = 'filter = "%s"' % (f)
        bundle = metricBundles.MetricBundle(metric, slicer,
                                            sqlconstraint, displayDict=displayDict,
                                            stackerList=[stacker, stacker2],
                                            plotDict=plotDict,
                                            plotFuncs=[plotFunc])
        noSaveBundleList.append(bundle)

    # Solar elongation
    sqls = ['filter = "%s"' % f for f in filters]
    orders = [filtorder[f] for f in filters]
    sqls.append('')
    orders.append(0)
    for sql, order in zip(sqls, orders):
        plotFuncs = [plots.HealpixSkyMap(), plots.HealpixHistogram()]
        displayDict = {'group': NEOGroup, 'subgroup': 'Solar Elongation',
                       'caption': 'Median solar elongation in degrees', 'order': order}
        metric = metrics.MedianMetric('solarElong')
        slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol)
        bundle = metricBundles.MetricBundle(metric, slicer, sql, displayDict=displayDict,
                                            plotFuncs=plotFuncs)
        bundleList.append(bundle)

        plotFuncs = [plots.HealpixSkyMap(), plots.HealpixHistogram()]
        displayDict = {'group': NEOGroup, 'subgroup': 'Solar Elongation',
                       'caption': 'Minimum solar elongation in degrees', 'order': order}
        metric = metrics.MinMetric('solarElong')
        slicer = slicers.HealpixSlicer(nside=nside, lonCol=lonCol, latCol=latCol)
        bundle = metricBundles.MetricBundle(metric, slicer, sql, displayDict=displayDict,
                                            plotFuncs=plotFuncs)
        bundleList.append(bundle)

    return (metricBundles.makeBundlesDictFromList(bundleList), mergedHistDict,
            metricBundles.makeBundlesDictFromList(noSaveBundleList))