コード例 #1
0
    def makeTemplate(
        self,
        sensorName,
        defocalType,
        imageSize,
        camType=CamType.LsstCam,
        opticalModel="offAxis",
        pixelScale=0.2,
    ):
        """Make the donut template image.

        Parameters
        ----------
        sensorName : str
            The camera detector for which we want to make a template. Should
            be in "Rxx_Sxx" format.
        defocalType : enum 'DefocalType'
            The defocal state of the sensor.
        imageSize : int
            Size of template in pixels. The template will be a square.
        camType : enum 'CamType', optional
            Camera type. (The default is CamType.LsstCam)
        opticalModel : str, optional
            Optical model. It can be "paraxial", "onAxis", or "offAxis".
            (The default is "offAxis")
        pixelScale : float, optional
            The pixels to arcseconds conversion factor. (The default is 0.2)

        Returns
        -------
        numpy.ndarray [int]
            The donut template as a binary image.

        Raises
        ------
        ValueError
            Camera type is not supported.
        """

        configDir = getConfigDir()

        # Load Instrument parameters
        instDir = os.path.join(configDir, "cwfs", "instData")
        inst = Instrument(instDir)

        if camType in (CamType.LsstCam, CamType.LsstFamCam, CamType.ComCam):
            inst.config(camType, imageSize)
            focalPlaneLayout = readPhoSimSettingData(configDir,
                                                     "focalplanelayout.txt",
                                                     "fieldCenter")

            pixelSizeInUm = float(focalPlaneLayout[sensorName][2])

            sensorXMicron, sensorYMicron = np.array(
                focalPlaneLayout[sensorName][:2], dtype=float)

        elif camType == CamType.AuxTel:
            # AuxTel only works with onAxis sources
            if opticalModel != "onAxis":
                raise ValueError(
                    str(f"Optical Model {opticalModel} not supported with AuxTel. "
                        + "Must use 'onAxis'."))
            # Defocal distance for Latiss in mm
            # for LsstCam can use the default
            # hence only need to set here
            announcedDefocalDisInMm = getDefocalDisInMm("auxTel")
            inst.config(camType, imageSize, announcedDefocalDisInMm)
            # load the info for auxTel
            pixelSizeInMeters = inst.getCamPixelSize()  # pixel size in meters.
            pixelSizeInUm = pixelSizeInMeters * 1e6

            camera = obs_lsst.Latiss.getCamera()
            sensorName = list(
                camera.getNameIter())[0]  # only one detector in latiss
            detector = camera.get(sensorName)
            xp, yp = detector.getCenter(
                cameraGeom.FOCAL_PLANE)  # center of CCD in mm

            # multiply by 1000 to for mm --> microns conversion
            sensorXMicron = yp * 1000
            sensorYMicron = xp * 1000

        else:
            raise ValueError("Camera type (%s) is not supported." % camType)

        # Create image for mask
        img = CompensableImage()

        # Convert pixel locations to degrees
        sensorXPixel = float(sensorXMicron) / pixelSizeInUm
        sensorYPixel = float(sensorYMicron) / pixelSizeInUm

        # Multiply by pixelScale then divide by 3600 for arcsec->deg conversion
        sensorXDeg = sensorXPixel * pixelScale / 3600
        sensorYDeg = sensorYPixel * pixelScale / 3600
        fieldXY = [sensorXDeg, sensorYDeg]

        # Define position of donut at center of current sensor in degrees
        boundaryT = 0
        maskScalingFactorLocal = 1
        img.setImg(fieldXY,
                   defocalType,
                   image=np.zeros((imageSize, imageSize)))
        img.makeMask(inst, opticalModel, boundaryT, maskScalingFactorLocal)

        return img.getNonPaddedMask()
コード例 #2
0
class TestCompensableImage(unittest.TestCase):
    """Test the CompensableImage class."""
    def setUp(self):

        # Get the path of module
        modulePath = getModulePath()

        # Define the instrument folder
        instDir = os.path.join(getConfigDir(), "cwfs", "instData")

        # Define the instrument name
        dimOfDonutOnSensor = 120

        self.inst = Instrument(instDir)
        self.inst.config(CamType.LsstCam,
                         dimOfDonutOnSensor,
                         announcedDefocalDisInMm=1.0)

        # Define the image folder and image names
        # Image data -- Don't know the final image format.
        # It is noted that image.readFile inuts is based on the txt file
        imageFolderPath = os.path.join(modulePath, "tests", "testData",
                                       "testImages", "LSST_NE_SN25")
        intra_image_name = "z11_0.25_intra.txt"
        extra_image_name = "z11_0.25_extra.txt"
        self.imgFilePathIntra = os.path.join(imageFolderPath, intra_image_name)
        self.imgFilePathExtra = os.path.join(imageFolderPath, extra_image_name)

        # This is the position of donut on the focal plane in degree
        self.fieldXY = (1.185, 1.185)

        # Define the optical model: "paraxial", "onAxis", "offAxis"
        self.opticalModel = "offAxis"

        # Get the true Zk
        zcAnsFilePath = os.path.join(
            modulePath,
            "tests",
            "testData",
            "testImages",
            "validation",
            "simulation",
            "LSST_NE_SN25_z11_0.25_exp.txt",
        )
        self.zcCol = np.loadtxt(zcAnsFilePath)

        self.wfsImg = CompensableImage()

    def testGetDefocalType(self):

        defocalType = self.wfsImg.getDefocalType()
        self.assertEqual(defocalType, DefocalType.Intra)

    def testGetImgObj(self):

        imgObj = self.wfsImg.getImgObj()
        self.assertTrue(isinstance(imgObj, Image))

    def testGetImg(self):

        img = self.wfsImg.getImg()
        self.assertTrue(isinstance(img, np.ndarray))
        self.assertEqual(len(img), 0)

    def testGetImgSizeInPix(self):

        imgSizeInPix = self.wfsImg.getImgSizeInPix()
        self.assertEqual(imgSizeInPix, 0)

    def testGetOffAxisCoeff(self):

        offAxisCoeff, offAxisOffset = self.wfsImg.getOffAxisCoeff()
        self.assertTrue(isinstance(offAxisCoeff, np.ndarray))
        self.assertEqual(len(offAxisCoeff), 0)
        self.assertEqual(offAxisOffset, 0.0)

    def testGetImgInit(self):

        imgInit = self.wfsImg.getImgInit()
        self.assertEqual(imgInit, None)

    def testIsCaustic(self):

        self.assertFalse(self.wfsImg.isCaustic())

    def testGetPaddedMask(self):

        pMask = self.wfsImg.getPaddedMask()
        self.assertEqual(len(pMask), 0)
        self.assertEqual(pMask.dtype, int)

    def testGetNonPaddedMask(self):

        cMask = self.wfsImg.getNonPaddedMask()
        self.assertEqual(len(cMask), 0)
        self.assertEqual(cMask.dtype, int)

    def testGetFieldXY(self):

        fieldX, fieldY = self.wfsImg.getFieldXY()
        self.assertEqual(fieldX, 0)
        self.assertEqual(fieldY, 0)

    def testSetImg(self):

        self._setIntraImg()
        self.assertEqual(self.wfsImg.getImg().shape, (120, 120))

    def _setIntraImg(self):

        self.wfsImg.setImg(self.fieldXY,
                           DefocalType.Intra,
                           imageFile=self.imgFilePathIntra)

    def testUpdateImage(self):

        self._setIntraImg()

        newImg = np.random.rand(5, 5)
        self.wfsImg.updateImage(newImg)

        self.assertTrue(np.all(self.wfsImg.getImg() == newImg))

    def testUpdateImgInit(self):

        self._setIntraImg()

        self.wfsImg.updateImgInit()

        delta = np.sum(np.abs(self.wfsImg.getImgInit() - self.wfsImg.getImg()))
        self.assertEqual(delta, 0)

    def testImageCoCenter(self):

        self._setIntraImg()

        self.wfsImg.imageCoCenter(self.inst)

        xc, yc = self.wfsImg.getImgObj().getCenterAndR()[0:2]
        self.assertEqual(int(xc), 63)
        self.assertEqual(int(yc), 63)

    def testCompensate(self):

        # Generate a fake algorithm class
        algo = TempAlgo()

        # Test the function of image compensation
        boundaryT = 8
        offAxisCorrOrder = 10
        zcCol = np.zeros(22)
        zcCol[3:] = self.zcCol * 1e-9

        wfsImgIntra = CompensableImage()
        wfsImgExtra = CompensableImage()
        wfsImgIntra.setImg(
            self.fieldXY,
            DefocalType.Intra,
            imageFile=self.imgFilePathIntra,
        )
        wfsImgExtra.setImg(self.fieldXY,
                           DefocalType.Extra,
                           imageFile=self.imgFilePathExtra)

        for wfsImg in [wfsImgIntra, wfsImgExtra]:
            wfsImg.makeMask(self.inst, self.opticalModel, boundaryT, 1)
            wfsImg.setOffAxisCorr(self.inst, offAxisCorrOrder)
            wfsImg.imageCoCenter(self.inst)
            wfsImg.compensate(self.inst, algo, zcCol, self.opticalModel)

        # Get the common region
        intraImg = wfsImgIntra.getImg()
        extraImg = wfsImgExtra.getImg()

        centroid = CentroidRandomWalk()
        binaryImgIntra = centroid.getImgBinary(intraImg)
        binaryImgExtra = centroid.getImgBinary(extraImg)

        binaryImg = binaryImgIntra + binaryImgExtra
        binaryImg[binaryImg < 2] = 0
        binaryImg = binaryImg / 2

        # Calculate the difference
        res = np.sum(np.abs(intraImg - extraImg) * binaryImg)
        self.assertLess(res, 500)

    def testCenterOnProjection(self):

        template = self._prepareGaussian2D(100, 1)

        dx = 2
        dy = 8
        img = np.roll(np.roll(template, dx, axis=1), dy, axis=0)
        np.roll(np.roll(img, dx, axis=1), dy, axis=0)

        self.assertGreater(np.sum(np.abs(img - template)), 29)

        imgRecenter = self.wfsImg.centerOnProjection(img, template, window=20)
        self.assertLess(np.sum(np.abs(imgRecenter - template)), 1e-7)

    def _prepareGaussian2D(self, imgSize, sigma):

        x = np.linspace(-10, 10, imgSize)
        y = np.linspace(-10, 10, imgSize)

        xx, yy = np.meshgrid(x, y)

        return (1 / (2 * np.pi * sigma**2) *
                np.exp(-(xx**2 / (2 * sigma**2) + yy**2 / (2 * sigma**2))))

    def testSetOffAxisCorr(self):

        self._setIntraImg()

        offAxisCorrOrder = 10
        self.wfsImg.setOffAxisCorr(self.inst, offAxisCorrOrder)

        offAxisCoeff, offAxisOffset = self.wfsImg.getOffAxisCoeff()
        self.assertEqual(offAxisCoeff.shape, (4, 66))
        self.assertAlmostEqual(offAxisCoeff[0, 0], -2.6362089 * 1e-3)
        self.assertEqual(offAxisOffset, 0.001)

    def testMakeMaskListOfParaxial(self):

        self._setIntraImg()

        model = "paraxial"
        masklist = self.wfsImg.makeMaskList(self.inst, model)

        masklistAns = np.array([[0, 0, 1, 1], [0, 0, 0.61, 0]])
        self.assertEqual(np.sum(np.abs(masklist - masklistAns)), 0)

    def testMakeMaskListOfOffAxis(self):

        self._setIntraImg()

        model = "offAxis"
        masklist = self.wfsImg.makeMaskList(self.inst, model)

        masklistAns = np.array([
            [0, 0, 1, 1],
            [0, 0, 0.61, 0],
            [-0.21240585, -0.21240585, 1.2300922, 1],
            [-0.08784336, -0.08784336, 0.55802573, 0],
        ])
        self.assertAlmostEqual(np.sum(np.abs(masklist - masklistAns)), 0)

    def testMakeMask(self):

        self._setIntraImg()

        boundaryT = 8
        maskScalingFactorLocal = 1
        model = "offAxis"
        self.wfsImg.makeMask(self.inst, model, boundaryT,
                             maskScalingFactorLocal)

        image = self.wfsImg.getImg()
        pMask = self.wfsImg.getPaddedMask()
        cMask = self.wfsImg.getNonPaddedMask()
        self.assertEqual(pMask.shape, image.shape)
        self.assertEqual(cMask.shape, image.shape)
        self.assertEqual(np.sum(np.abs(cMask - pMask)), 3001)
コード例 #3
0
ファイル: DonutTemplateModel.py プロジェクト: connolly/ts_wep
    def makeTemplate(
        self,
        sensorName,
        defocalType,
        imageSize,
        camType=CamType.LsstCam,
        opticalModel="offAxis",
        pixelScale=0.2,
    ):
        """Make the donut template image.

        Parameters
        ----------
        sensorName : str
            The camera detector for which we want to make a template. Should
            be in "Rxx_Sxx" format.
        defocalType : enum 'DefocalType'
            The defocal state of the sensor.
        imageSize : int
            Size of template in pixels. The template will be a square.
        camType : enum 'CamType', optional
            Camera type. (Default is CamType.LsstCam)
        model : str, optional
            Optical model. It can be "paraxial", "onAxis", or "offAxis".
            (The default is "offAxis")
        pixelScale : float, optional
            The pixels to arcseconds conversion factor. (The default is 0.2)

        Returns
        -------
        numpy.ndarray [int]
            The donut template as a binary image.
        """

        configDir = getConfigDir()
        focalPlaneLayout = readPhoSimSettingData(configDir,
                                                 "focalplanelayout.txt",
                                                 "fieldCenter")

        pixelSizeInUm = float(focalPlaneLayout[sensorName][2])
        sizeXinPixel = int(focalPlaneLayout[sensorName][3])

        sensorXMicron, sensorYMicron = np.array(
            focalPlaneLayout[sensorName][:2], dtype=float)
        # Correction for wavefront sensors
        if sensorName in ("R44_S00_C0", "R00_S22_C1"):
            # Shift center to +x direction
            sensorXMicron = sensorXMicron + sizeXinPixel / 2 * pixelSizeInUm
        elif sensorName in ("R44_S00_C1", "R00_S22_C0"):
            # Shift center to -x direction
            sensorXMicron = sensorXMicron - sizeXinPixel / 2 * pixelSizeInUm
        elif sensorName in ("R04_S20_C1", "R40_S02_C0"):
            # Shift center to -y direction
            sensorYMicron = sensorYMicron - sizeXinPixel / 2 * pixelSizeInUm
        elif sensorName in ("R04_S20_C0", "R40_S02_C1"):
            # Shift center to +y direction
            sensorYMicron = sensorYMicron + sizeXinPixel / 2 * pixelSizeInUm

        # Load Instrument parameters
        instDir = os.path.join(configDir, "cwfs", "instData")
        inst = Instrument(instDir)
        inst.config(camType, imageSize)

        # Create image for mask
        img = CompensableImage()

        # Convert pixel locations to degrees
        sensorXPixel = float(sensorXMicron) / pixelSizeInUm
        sensorYPixel = float(sensorYMicron) / pixelSizeInUm

        # Multiply by pixelScale then divide by 3600 for arcsec -> deg conversion
        sensorXDeg = sensorXPixel * pixelScale / 3600
        sensorYDeg = sensorYPixel * pixelScale / 3600
        fieldXY = [sensorXDeg, sensorYDeg]

        # Define position of donut at center of current sensor in degrees
        boundaryT = 0
        maskScalingFactorLocal = 1
        img.setImg(fieldXY,
                   defocalType,
                   image=np.zeros((imageSize, imageSize)))
        img.makeMask(inst, opticalModel, boundaryT, maskScalingFactorLocal)

        return img.getNonPaddedMask()