コード例 #1
0
ファイル: test_blobset.py プロジェクト: lsst/verify
    def setUp(self):
        mag1 = Datum(quantity=5 * u.mag, label='mag1', description='Magnitude')
        mag2 = Datum(quantity=10 * u.mag,
                     label='mag2',
                     description='Magnitude')
        self.blob1 = Blob('blob1', mag1=mag1, mag2=mag2)

        sep1 = Datum(quantity=5 * u.arcsec,
                     label='sep1',
                     description='Separation')
        sep2 = Datum(quantity=10 * u.arcsec,
                     label='sep2',
                     description='Separation')
        self.blob2 = Blob('blob2', sep1=sep1, sep2=sep2)
コード例 #2
0
def build_matched_dataset(repo,
                          dataIds,
                          matchRadius=None,
                          safeSnr=50.,
                          useJointCal=False,
                          skipTEx=False):
    blob = Blob('MatchedMultiVisitDataset')

    if not matchRadius:
        matchRadius = afwGeom.Angle(1, afwGeom.arcseconds)

    # Extract single filter
    blob['filterName'] = Datum(quantity=set([dId['filter']
                                             for dId in dataIds]).pop(),
                               description='Filter name')

    # Record important configuration
    blob['useJointCal'] = Datum(
        quantity=useJointCal,
        description='Whether jointcal/meas_mosaic calibrations were used')

    # Match catalogs across visits
    blob._catalog, blob._matchedCatalog = \
        _loadAndMatchCatalogs(repo, dataIds, matchRadius,
                                   useJointCal=useJointCal, skipTEx=False)

    blob.magKey = blob._matchedCatalog.schema.find("base_PsfFlux_mag").key
    # Reduce catalogs into summary statistics.
    # These are the serialiable attributes of this class.
    _reduceStars(blob, blob._matchedCatalog, safeSnr)
    return blob
コード例 #3
0
def build_photometric_error_model(matchedMultiVisitDataset,
                                  selection,
                                  medianRef=100,
                                  matchRef=500):
    r"""Returns a serializable analytic photometry error model for a single visit.

    This model is originally presented in http://arxiv.org/abs/0805.2366v4
    (Eq 4, 5):

    .. math::

       \sigma_1^2 &= \sigma_\mathrm{sys}^2 + \sigma_\mathrm{rand}^2 \\
       x &= 10^{0.4(m-m_5)} \\
       \sigma_\mathrm{rand}^2 &= (0.04 - \gamma) x + \gamma x^2~[\mathrm{mag}^2]

    Parameters
    ----------
    matchedMultiVisitDataset : `lsst.valididate.drp.matchreduce.MatchedMultiVisitDataset`
        A dataset containing matched statistics for stars across multiple visits.
    selection : `np.array` of `bool`
        The selection of sources to use to build the model.
    medianRef : `float` or `astropy.unit.Quantity`, optional
        Median reference astrometric scatter (millimagnitudes by default).
    matchRef : `int` or `astropy.unit.Quantity`, optional
        Should match at least matchRef stars.

    Returns
    ----------
    blob : `lsst.verify.Blob`
        Blob with datums:

        - ``sigmaSys``: Systematic error floor.
        - ``gamma``: Proxy for sky brightness and read noise.
        - ``m5``: 5-sigma photometric depth (magnitudes).
        - ``photRms``: RMS photometric scatter for 'good' stars (millimagnitudes).

    Notes
    -----
    The scatter and match defaults are appropriate to SDSS are stored here.
    For SDSS, stars with mag < 19.5 should be completely well measured.
    This limit is a band-dependent statement most appropriate to r.
    """
    blob = Blob('PhotometricErrorModel')
    for field in ('brightSnrMin', 'brightSnrMax'):
        blob[field] = matchedMultiVisitDataset[field]

    # FIXME add a description field to blobs?
    # _doc['doc'] \
    #     = "Photometric uncertainty model from " \
    #       "http://arxiv.org/abs/0805.2366v4 (Eq 4, 5): " \
    #       "sigma_1^2 = sigma_sys^2 + sigma_rand^2, " \
    #       "sigma_rand^2 = (0.04 - gamma) * x + gamma * x^2 [mag^2] " \
    #       "where x = 10**(0.4*(m-m_5))"

    if not isinstance(medianRef, u.Quantity):
        medianRef = medianRef * u.mmag
    _compute(blob, selection, matchedMultiVisitDataset['mag'].quantity,
             matchedMultiVisitDataset['magerr'].quantity,
             matchedMultiVisitDataset['magrms'].quantity, medianRef, matchRef)
    return blob
コード例 #4
0
ファイル: test_measurements.py プロジェクト: lsst/verify
    def setUp(self):
        self.pa1 = Metric(
            'validate_drp.PA1',
            "The maximum rms of the unresolved source magnitude distribution "
            "around the mean value (repeatability).",
            'mmag',
            tags=['photometric', 'LPM-17'],
            reference_doc='LPM-17',
            reference_url='http://ls.st/lpm-17',
            reference_page=21)

        self.blob1 = Blob('Blob1')
        self.blob1['datum1'] = Datum(5 * u.arcsec, 'Datum 1')
        self.blob1['datum2'] = Datum(28. * u.mag, 'Datum 2')

        self.blob2 = Blob('Blob2')
        self.blob2['datumN'] = Datum(11 * u.dimensionless_unscaled, 'Count')
コード例 #5
0
def build_astrometric_error_model(matchedMultiVisitDataset,
                                  brightSnr=100,
                                  medianRef=100,
                                  matchRef=500):
    """Serializable model of astrometry errors across multiple visits.

    .. math::

       \mathrm{astromRms} = C \theta / \mathrm{SNR} + \sigma_\mathrm{sys}

    Parameters
    ----------
    matchedMultiVisitDataset : `MatchedMultiVisitDataset`
        A dataset containing matched statistics for stars across multiple
        visits.
    brightSnr : `float` or `astropy.unit.Quantity`, optional
        Minimum SNR for a star to be considered "bright" (dimensionless).
    medianRef : `float` or `astropy.unit.Quantity`, optional
        Median reference astrometric scatter (default: milliarcsecond).
    matchRef : int, optional
        Should match at least matchRef number of stars (dimensionless).

    Returns
    -------
    blob : `lsst.verify.Blob`
        Blob with datums:

        - ``brightSnr``: Threshold SNR for bright sources used in this model.
        - ``C``: Model scaling factor.
        - ``theta``: Seeing (milliarcsecond).
        - ``sigmaSys``: Systematic error floor (milliarcsecond).
        - ``astromRms``: Astrometric scatter (RMS) for good stars (milliarcsecond).

    Notes
    -----
    The scatter and match defaults appropriate to SDSS are the defaults
    for ``medianRef`` and ``matchRef``.

    For SDSS, stars with mag < 19.5 should be completely well measured.
    """

    blob = Blob('AnalyticAstrometryModel')

    # FIXME add description field to blobs
    # _doc['doc'] \
    #     = "Astrometric astrometry model: mas = C*theta/SNR + sigmaSys"

    if not isinstance(brightSnr, u.Quantity):
        brightSnr = brightSnr * u.Unit('')
    if not isinstance(medianRef, u.Quantity):
        medianRef = medianRef * u.marcsec

    _compute(blob, matchedMultiVisitDataset['snr'].quantity,
             matchedMultiVisitDataset['dist'].quantity,
             len(matchedMultiVisitDataset.goodMatches), brightSnr, medianRef,
             matchRef)
    return blob
コード例 #6
0
    def setUp(self):
        # Mock metrics
        self.metric_photrms = Metric('test.PhotRms', 'Photometric RMS', 'mmag')
        self.metric_photmed = Metric('test.PhotMedian', 'Median magntidue',
                                     'mag')
        self.metric_set = MetricSet([self.metric_photrms, self.metric_photmed])

        # Mock specifications
        self.spec_photrms_design = ThresholdSpecification(
            'test.PhotRms.design', 20. * u.mmag, '<')
        self.spec_set = SpecificationSet([self.spec_photrms_design])

        # Mock measurements
        self.meas_photrms = Measurement(self.metric_photrms,
                                        15 * u.mmag,
                                        notes={'note': 'value'})
        self.meas_photrms.extras['n_stars'] = Datum(
            250,
            label='N stars',
            description='Number of stars included in RMS estimate')
        self.measurement_set = MeasurementSet([self.meas_photrms])

        # Metrics for Job 2
        self.metric_test_2 = Metric('test2.SourceCount', 'Source Count', '')
        self.blob_test_2 = Blob('test2_blob',
                                sn=Datum(50 * u.dimensionless_unscaled,
                                         label='S/N'))
        self.metric_set_2 = MetricSet([self.metric_test_2])

        # Specifications for Job 2
        self.spec_test_2 = ThresholdSpecification(
            'test2.SourceCount.design', 100 * u.dimensionless_unscaled, '>=')
        self.spec_set_2 = SpecificationSet([self.spec_test_2])

        # Measurements for Job 2
        self.meas_test_2_SourceCount = Measurement(
            self.metric_test_2, 200 * u.dimensionless_unscaled)
        self.meas_test_2_SourceCount.link_blob(self.blob_test_2)
        self.measurement_set_2 = MeasurementSet([self.meas_test_2_SourceCount])
コード例 #7
0
def build_matched_dataset(repo,
                          dataIds,
                          matchRadius=None,
                          safeSnr=50.,
                          useJointCal=False,
                          skipTEx=False):
    """Construct a container for matched star catalogs from multple visits, with filtering,
    summary statistics, and modelling.

    `lsst.verify.Blob` instances are serializable to JSON.

    Parameters
    ----------
    repo : `str` or `Butler`
        A Butler instance or a repository URL that can be used to construct
        one.
    dataIds : `list` of `dict`
        List of `butler` data IDs of Image catalogs to compare to reference.
        The `calexp` cpixel image is needed for the photometric calibration.
    matchRadius :  afwGeom.Angle(), optional
        Radius for matching. Default is 1 arcsecond.
    safeSnr : `float`, optional
        Minimum median SNR for a match to be considered "safe".
    useJointCal : `bool`, optional
        Use jointcal/meas_mosaic outputs to calibrate positions and fluxes.
    skipTEx : `bool`, optional
        Skip TEx calculations (useful for older catalogs that don't have
        PsfShape measurements).

    Attributes of returned Blob
    ----------
    filterName : `str`
        Name of filter used for all observations.
    mag : `astropy.units.Quantity`
        Mean PSF magnitudes of stars over multiple visits (magnitudes).
    magerr : `astropy.units.Quantity`
        Median 1-sigma uncertainty of PSF magnitudes over multiple visits
        (magnitudes).
    magrms : `astropy.units.Quantity`
        RMS of PSF magnitudes over multiple visits (magnitudes).
    snr : `astropy.units.Quantity`
        Median signal-to-noise ratio of PSF magnitudes over multiple visits
        (dimensionless).
    dist : `astropy.units.Quantity`
        RMS of sky coordinates of stars over multiple visits (milliarcseconds).

        *Not serialized.*
    goodMatches
        all good matches, as an afw.table.GroupView;
        good matches contain only objects whose detections all have

        1. a PSF Flux measurement with S/N > 1
        2. a finite (non-nan) PSF magnitude. This separate check is largely
           to reject failed zeropoints.
        3. and do not have flags set for bad, cosmic ray, edge or saturated

        *Not serialized.*

    safeMatches
        safe matches, as an afw.table.GroupView. Safe matches
        are good matches that are sufficiently bright and sufficiently
        compact.

        *Not serialized.*
    magKey
        Key for `"base_PsfFlux_mag"` in the `goodMatches` and `safeMatches`
        catalog tables.

        *Not serialized.*
    """
    blob = Blob('MatchedMultiVisitDataset')

    if not matchRadius:
        matchRadius = afwGeom.Angle(1, afwGeom.arcseconds)

    # Extract single filter
    blob['filterName'] = Datum(quantity=set([dId['filter']
                                             for dId in dataIds]).pop(),
                               description='Filter name')

    # Record important configuration
    blob['useJointCal'] = Datum(
        quantity=useJointCal,
        description='Whether jointcal/meas_mosaic calibrations were used')

    # Match catalogs across visits
    blob._catalog, blob._matchedCatalog = \
        _loadAndMatchCatalogs(repo, dataIds, matchRadius,
                              useJointCal=useJointCal, skipTEx=skipTEx)

    blob.magKey = blob._matchedCatalog.schema.find("base_PsfFlux_mag").key
    # Reduce catalogs into summary statistics.
    # These are the serialiable attributes of this class.
    _reduceStars(blob, blob._matchedCatalog, safeSnr)
    return blob
コード例 #8
0
ファイル: matchreduce.py プロジェクト: gcmshadow/validate_drp
def build_matched_dataset(repo,
                          dataIds,
                          matchRadius=None,
                          brightSnrMin=None,
                          brightSnrMax=None,
                          faintSnrMin=None,
                          faintSnrMax=None,
                          doApplyExternalPhotoCalib=False,
                          externalPhotoCalibName=None,
                          doApplyExternalSkyWcs=False,
                          externalSkyWcsName=None,
                          skipTEx=False,
                          skipNonSrd=False):
    """Construct a container for matched star catalogs from multple visits, with filtering,
    summary statistics, and modelling.

    `lsst.verify.Blob` instances are serializable to JSON.

    Parameters
    ----------
    repo : `str` or `lsst.daf.persistence.Butler`
        A Butler instance or a repository URL that can be used to construct
        one.
    dataIds : `list` of `dict`
        List of `butler` data IDs of Image catalogs to compare to reference.
        The `calexp` cpixel image is needed for the photometric calibration.
    matchRadius :  `lsst.geom.Angle`, optional
        Radius for matching. Default is 1 arcsecond.
    brightSnrMin : `float`, optional
        Minimum median SNR for a source to be considered bright; passed to `filterSources`.
    brightSnrMax : `float`, optional
        Maximum median SNR for a source to be considered bright; passed to `filterSources`.
    faintSnrMin : `float`, optional
        Minimum median SNR for a source to be considered faint; passed to `filterSources`.
    faintSnrMax : `float`, optional
        Maximum median SNR for a source to be considered faint; passed to `filterSources`.
    doApplyExternalPhotoCalib : bool, optional
        Apply external photoCalib to calibrate fluxes.
    externalPhotoCalibName : str, optional
        Type of external `PhotoCalib` to apply.  Currently supported are jointcal,
        fgcm, and fgcm_tract.  Must be set if "doApplyExternalPhotoCalib" is True.
    doApplyExternalSkyWcs : bool, optional
        Apply external wcs to calibrate positions.
    externalSkyWcsName : str, optional:
        Type of external `wcs` to apply.  Currently supported is jointcal.
        Must be set if "doApplyExternalSkyWcs" is True.
    skipTEx : `bool`, optional
        Skip TEx calculations (useful for older catalogs that don't have
        PsfShape measurements).
    skipNonSrd : `bool`, optional
        Skip any metrics not defined in the LSST SRD; default False.

    Attributes of returned Blob
    ----------
    filterName : `str`
        Name of filter used for all observations.
    mag : `astropy.units.Quantity`
        Mean PSF magnitudes of stars over multiple visits (magnitudes).
    magerr : `astropy.units.Quantity`
        Median 1-sigma uncertainty of PSF magnitudes over multiple visits
        (magnitudes).
    magrms : `astropy.units.Quantity`
        RMS of PSF magnitudes over multiple visits (magnitudes).
    snr : `astropy.units.Quantity`
        Median signal-to-noise ratio of PSF magnitudes over multiple visits
        (dimensionless).
    dist : `astropy.units.Quantity`
        RMS of sky coordinates of stars over multiple visits (milliarcseconds).

        *Not serialized.*
    matchesFaint : `afw.table.GroupView`
        Faint matches containing only objects that have:

        1. A PSF Flux measurement with sufficient S/N.
        2. A finite (non-nan) PSF magnitude. This separate check is largely
           to reject failed zeropoints.
        3. No flags set for bad, cosmic ray, edge or saturated.
        4. Extendedness consistent with a point source.

        *Not serialized.*
    matchesBright : `afw.table.GroupView`
        Bright matches matching a higher S/N threshold than matchesFaint.

        *Not serialized.*
    magKey
        Key for `"base_PsfFlux_mag"` in the `matchesFaint` and `matchesBright`
        catalog tables.

        *Not serialized.*

    Raises
    ------
    RuntimeError:
        Raised if "doApplyExternalPhotoCalib" is True and "externalPhotoCalibName"
        is None, or if "doApplyExternalSkyWcs" is True and "externalSkyWcsName" is
        None.
    """
    if doApplyExternalPhotoCalib and externalPhotoCalibName is None:
        raise RuntimeError(
            "Must set externalPhotoCalibName if doApplyExternalPhotoCalib is True."
        )
    if doApplyExternalSkyWcs and externalSkyWcsName is None:
        raise RuntimeError(
            "Must set externalSkyWcsName if doApplyExternalSkyWcs is True.")

    blob = Blob('MatchedMultiVisitDataset')

    if not matchRadius:
        matchRadius = geom.Angle(1, geom.arcseconds)

    # Extract single filter
    blob['filterName'] = Datum(quantity=set([dId['filter']
                                             for dId in dataIds]).pop(),
                               description='Filter name')

    # Record important configuration
    blob['doApplyExternalPhotoCalib'] = Datum(
        quantity=doApplyExternalPhotoCalib,
        description=('Whether external photometric '
                     'calibrations were used.'))
    blob['externalPhotoCalibName'] = Datum(
        quantity=externalPhotoCalibName,
        description='Name of external PhotoCalib dataset used.')
    blob['doApplyExternalSkyWcs'] = Datum(
        quantity=doApplyExternalSkyWcs,
        description='Whether external wcs calibrations were used.')
    blob['externalSkyWcsName'] = Datum(
        quantity=externalSkyWcsName,
        description='Name of external wcs dataset used.')

    # Match catalogs across visits
    blob._catalog, blob._matchedCatalog = \
        _loadAndMatchCatalogs(repo, dataIds, matchRadius,
                              doApplyExternalPhotoCalib=doApplyExternalPhotoCalib,
                              externalPhotoCalibName=externalPhotoCalibName,
                              doApplyExternalSkyWcs=doApplyExternalSkyWcs,
                              externalSkyWcsName=externalSkyWcsName,
                              skipTEx=skipTEx, skipNonSrd=skipNonSrd)

    blob.magKey = blob._matchedCatalog.schema.find("base_PsfFlux_mag").key
    # Reduce catalogs into summary statistics.
    # These are the serializable attributes of this class.
    filterResult = filterSources(
        blob._matchedCatalog,
        brightSnrMin=brightSnrMin,
        brightSnrMax=brightSnrMax,
        faintSnrMin=faintSnrMin,
        faintSnrMax=faintSnrMax,
    )
    blob['brightSnrMin'] = Datum(
        quantity=filterResult.brightSnrMin * u.Unit(''),
        label='Bright SNR Min',
        description='Minimum median SNR for a source to be considered bright')
    blob['brightSnrMax'] = Datum(
        quantity=filterResult.brightSnrMax * u.Unit(''),
        label='Bright SNR Max',
        description='Maximum median SNR for a source to be considered bright')
    summarizeSources(blob, filterResult)
    return blob