コード例 #1
0
ファイル: test_config.py プロジェクト: Hckjs/cta-lstchain
def test_replace_config():
    a = dict(toto=1, tata=2)
    b = dict(tata=3, tutu=4)
    c = config.replace_config(a, b)
    assert c["toto"] == 1
    assert c["tata"] == 3
    assert c["tutu"] == 4
コード例 #2
0
def main():
    std_config = get_standard_config()

    if args.config_file is not None:
        config = replace_config(std_config, read_configuration_file(args.config_file))
    else:
        config = std_config

    print(config['tailcut'])

    geom = CameraGeometry.from_name('LSTCam-002')
    foclen = OpticsDescription.from_name('LST').equivalent_focal_length
    dl1_container = DL1ParametersContainer()
    parameters_to_update = list(HillasParametersContainer().keys())
    parameters_to_update.extend(['wl', 'r', 'leakage', 'n_islands', 'intercept', 'time_gradient'])

    nodes_keys = get_dataset_keys(args.input_file)
    if args.noimage:
        nodes_keys.remove(dl1_images_lstcam_key)

    auto_merge_h5files([args.input_file], args.output_file, nodes_keys=nodes_keys)

    with tables.open_file(args.input_file, mode='r') as input:
        image_table = input.root[dl1_images_lstcam_key]
        with tables.open_file(args.output_file, mode='a') as output:

            params = output.root[dl1_params_lstcam_key].read()

            for ii, row in enumerate(image_table):
                if ii%10000 == 0:
                    print(ii)
                image = row['image']
                pulse_time = row['pulse_time']
                signal_pixels = tailcuts_clean(geom, image, **config['tailcut'])
                if image[signal_pixels].shape[0] > 0:
                    num_islands, island_labels = number_of_islands(geom, signal_pixels)
                    hillas = hillas_parameters(geom[signal_pixels], image[signal_pixels])

                    dl1_container.fill_hillas(hillas)
                    dl1_container.set_timing_features(geom[signal_pixels],
                                                      image[signal_pixels],
                                                      pulse_time[signal_pixels],
                                                      hillas)
                    dl1_container.set_leakage(geom, image, signal_pixels)
                    dl1_container.n_islands = num_islands
                    dl1_container.wl = dl1_container.width / dl1_container.length
                    width = np.rad2deg(np.arctan2(dl1_container.width, foclen))
                    length = np.rad2deg(np.arctan2(dl1_container.length, foclen))
                    dl1_container.width = width.value
                    dl1_container.length = length.value
                    dl1_container.r = np.sqrt(dl1_container.x**2 + dl1_container.y**2)

                    for p in parameters_to_update:
                        params[ii][p] = Quantity(dl1_container[p]).value
                else:
                    for p in parameters_to_update:
                        params[ii][p] = 0

            output.root[dl1_params_lstcam_key][:] = params
コード例 #3
0
def main():
    std_config = get_standard_config()

    log.setLevel(logging.INFO)
    handler = logging.StreamHandler()
    logging.getLogger().addHandler(handler)

    if args.config_file is not None:
        config = replace_config(std_config, read_configuration_file(args.config_file))
    else:
        config = std_config

    log.info(f"Tailcut config used: {config['tailcut']}")

    foclen = OpticsDescription.from_name('LST').equivalent_focal_length
    cam_table = Table.read(args.input_file, path="instrument/telescope/camera/LSTCam")
    camera_geom = CameraGeometry.from_table(cam_table)

    dl1_container = DL1ParametersContainer()
    parameters_to_update = list(HillasParametersContainer().keys())
    parameters_to_update.extend([
        'concentration_cog',
        'concentration_core',
        'concentration_pixel',
        'leakage_intensity_width_1',
        'leakage_intensity_width_2',
        'leakage_pixels_width_1',
        'leakage_pixels_width_2',
        'n_islands',
        'intercept',
        'time_gradient',
        'n_pixels',
        'wl',
        'log_intensity'
    ])

    nodes_keys = get_dataset_keys(args.input_file)
    if args.noimage:
        nodes_keys.remove(dl1_images_lstcam_key)

    auto_merge_h5files([args.input_file], args.output_file, nodes_keys=nodes_keys)

    with tables.open_file(args.input_file, mode='r') as input:
        image_table = input.root[dl1_images_lstcam_key]
        dl1_params_input = input.root[dl1_params_lstcam_key].colnames
        disp_params = {'disp_dx', 'disp_dy', 'disp_norm', 'disp_angle', 'disp_sign'}
        if set(dl1_params_input).intersection(disp_params):
            parameters_to_update.extend(disp_params)

        with tables.open_file(args.output_file, mode='a') as output:
            params = output.root[dl1_params_lstcam_key].read()
            for ii, row in enumerate(image_table):

                dl1_container.reset()

                image = row['image']
                peak_time = row['peak_time']

                signal_pixels = tailcuts_clean(camera_geom, image, **config['tailcut'])

                n_pixels = np.count_nonzero(signal_pixels)
                if n_pixels > 0:
                    num_islands, island_labels = number_of_islands(camera_geom, signal_pixels)
                    n_pixels_on_island = np.bincount(island_labels.astype(np.int))
                    n_pixels_on_island[0] = 0  # first island is no-island and should not be considered
                    max_island_label = np.argmax(n_pixels_on_island)
                    signal_pixels[island_labels != max_island_label] = False

                    hillas = hillas_parameters(camera_geom[signal_pixels], image[signal_pixels])

                    dl1_container.fill_hillas(hillas)
                    dl1_container.set_timing_features(camera_geom[signal_pixels],
                                                      image[signal_pixels],
                                                      peak_time[signal_pixels],
                                                      hillas)

                    dl1_container.set_leakage(camera_geom, image, signal_pixels)
                    dl1_container.set_concentration(camera_geom, image, hillas)
                    dl1_container.n_islands = num_islands
                    dl1_container.wl = dl1_container.width / dl1_container.length
                    dl1_container.n_pixels = n_pixels
                    width = np.rad2deg(np.arctan2(dl1_container.width, foclen))
                    length = np.rad2deg(np.arctan2(dl1_container.length, foclen))
                    dl1_container.width = width
                    dl1_container.length = length
                    dl1_container.log_intensity = np.log10(dl1_container.intensity)

                if set(dl1_params_input).intersection(disp_params):
                    disp_dx, disp_dy, disp_norm, disp_angle, disp_sign = disp(
                        dl1_container['x'].to_value(u.m),
                        dl1_container['y'].to_value(u.m),
                        params['src_x'][ii],
                        params['src_y'][ii]
                    )

                    dl1_container['disp_dx'] = disp_dx
                    dl1_container['disp_dy'] = disp_dy
                    dl1_container['disp_norm'] = disp_norm
                    dl1_container['disp_angle'] = disp_angle
                    dl1_container['disp_sign'] = disp_sign

                for p in parameters_to_update:
                    params[ii][p] = u.Quantity(dl1_container[p]).value

            output.root[dl1_params_lstcam_key][:] = params
コード例 #4
0
def main():
    std_config = get_standard_config()

    if args.config_file is not None:
        config = replace_config(std_config,
                                read_configuration_file(args.config_file))
    else:
        config = std_config

    print(config['tailcut'])

    foclen = OpticsDescription.from_name('LST').equivalent_focal_length
    cam_table = Table.read(args.input_file,
                           path="instrument/telescope/camera/LSTCam")
    camera_geom = CameraGeometry.from_table(cam_table)

    dl1_container = DL1ParametersContainer()
    parameters_to_update = list(HillasParametersContainer().keys())
    parameters_to_update.extend([
        'concentration_cog',
        'concentration_core',
        'concentration_pixel',
        'leakage_intensity_width_1',
        'leakage_intensity_width_2',
        'leakage_pixels_width_1',
        'leakage_pixels_width_2',
        'n_islands',
        'intercept',
        'time_gradient',
        'n_pixels',
        'wl',
        'r',
    ])

    nodes_keys = get_dataset_keys(args.input_file)
    if args.noimage:
        nodes_keys.remove(dl1_images_lstcam_key)

    auto_merge_h5files([args.input_file],
                       args.output_file,
                       nodes_keys=nodes_keys)

    with tables.open_file(args.input_file, mode='r') as input:
        image_table = input.root[dl1_images_lstcam_key]
        with tables.open_file(args.output_file, mode='a') as output:

            params = output.root[dl1_params_lstcam_key].read()

            for ii, row in enumerate(image_table):
                if ii % 10000 == 0:
                    print(ii)
                image = row['image']
                peak_time = row['peak_time']

                signal_pixels = tailcuts_clean(camera_geom, image,
                                               **config['tailcut'])
                n_pixels = np.count_nonzero(signal_pixels)
                if n_pixels > 0:
                    num_islands, island_labels = number_of_islands(
                        camera_geom, signal_pixels)
                    n_pixels_on_island = np.bincount(
                        island_labels.astype(np.int))
                    n_pixels_on_island[
                        0] = 0  # first island is no-island and should not be considered
                    max_island_label = np.argmax(n_pixels_on_island)
                    signal_pixels[island_labels != max_island_label] = False

                    hillas = hillas_parameters(camera_geom[signal_pixels],
                                               image[signal_pixels])

                    dl1_container.fill_hillas(hillas)
                    dl1_container.set_timing_features(
                        camera_geom[signal_pixels], image[signal_pixels],
                        peak_time[signal_pixels], hillas)

                    dl1_container.set_leakage(camera_geom, image,
                                              signal_pixels)
                    dl1_container.set_concentration(camera_geom, image, hillas)
                    dl1_container.n_islands = num_islands
                    dl1_container.wl = dl1_container.width / dl1_container.length
                    dl1_container.n_pixels = n_pixels
                    width = np.rad2deg(np.arctan2(dl1_container.width, foclen))
                    length = np.rad2deg(
                        np.arctan2(dl1_container.length, foclen))
                    dl1_container.width = width
                    dl1_container.length = length
                    dl1_container.r = np.sqrt(dl1_container.x**2 +
                                              dl1_container.y**2)

                else:
                    # for consistency with r0_to_dl1.py:
                    for key in dl1_container.keys():
                        dl1_container[key] = \
                            u.Quantity(0, dl1_container.fields[key].unit)

                    dl1_container.width = u.Quantity(np.nan, u.m)
                    dl1_container.length = u.Quantity(np.nan, u.m)
                    dl1_container.wl = u.Quantity(np.nan, u.m)

            for p in parameters_to_update:
                params[ii][p] = u.Quantity(dl1_container[p]).value

            output.root[dl1_params_lstcam_key][:] = params
コード例 #5
0
ファイル: lstchain_dl1ab.py プロジェクト: Hckjs/cta-lstchain
def main():
    args = parser.parse_args()

    log.setLevel(logging.INFO)
    handler = logging.StreamHandler()
    logging.getLogger().addHandler(handler)

    if Path(args.output_file).exists():
        log.critical(f'Output file {args.output_file} already exists')
        sys.exit(1)

    std_config = get_standard_config()
    if args.config_file is not None:
        config = replace_config(std_config,
                                read_configuration_file(args.config_file))
    else:
        config = std_config

    with tables.open_file(args.input_file, 'r') as f:
        is_simulation = 'simulation' in f.root

    increase_nsb = False
    increase_psf = False
    if "image_modifier" in config:
        imconfig = config["image_modifier"]
        increase_nsb = imconfig["increase_nsb"]
        increase_psf = imconfig["increase_psf"]
        if increase_nsb or increase_psf:
            log.info(f"image_modifier configuration: {imconfig}")
        extra_noise_in_dim_pixels = imconfig["extra_noise_in_dim_pixels"]
        extra_bias_in_dim_pixels = imconfig["extra_bias_in_dim_pixels"]
        transition_charge = imconfig["transition_charge"]
        extra_noise_in_bright_pixels = imconfig["extra_noise_in_bright_pixels"]
        smeared_light_fraction = imconfig["smeared_light_fraction"]
        if (increase_nsb or increase_psf):
            log.info(
                "NOTE: Using the image_modifier options means images will "
                "not be saved.")
            args.no_image = True

    if is_simulation:
        args.pedestal_cleaning = False

    if args.pedestal_cleaning:
        log.info("Pedestal cleaning")
        clean_method_name = 'tailcuts_clean_with_pedestal_threshold'
        sigma = config[clean_method_name]['sigma']
        pedestal_thresh = get_threshold_from_dl1_file(args.input_file, sigma)
        cleaning_params = get_cleaning_parameters(config, clean_method_name)
        pic_th, boundary_th, isolated_pixels, min_n_neighbors = cleaning_params
        log.info(
            f"Fraction of pixel cleaning thresholds above picture thr.:"
            f"{np.sum(pedestal_thresh > pic_th) / len(pedestal_thresh):.3f}")
        picture_th = np.clip(pedestal_thresh, pic_th, None)
        log.info(f"Tailcut clean with pedestal threshold config used:"
                 f"{config['tailcuts_clean_with_pedestal_threshold']}")
    else:
        clean_method_name = 'tailcut'
        cleaning_params = get_cleaning_parameters(config, clean_method_name)
        picture_th, boundary_th, isolated_pixels, min_n_neighbors = cleaning_params
        log.info(f"Tailcut config used: {config['tailcut']}")

    use_dynamic_cleaning = False
    if 'apply' in config['dynamic_cleaning']:
        use_dynamic_cleaning = config['dynamic_cleaning']['apply']

    if use_dynamic_cleaning:
        THRESHOLD_DYNAMIC_CLEANING = config['dynamic_cleaning']['threshold']
        FRACTION_CLEANING_SIZE = config['dynamic_cleaning'][
            'fraction_cleaning_intensity']
        log.info(
            "Using dynamic cleaning for events with average size of the "
            f"3 most brighest pixels > {config['dynamic_cleaning']['threshold']} p.e"
        )
        log.info(
            "Remove from image pixels which have charge below "
            f"= {config['dynamic_cleaning']['fraction_cleaning_intensity']} * average size"
        )

    use_only_main_island = True
    if "use_only_main_island" in config[clean_method_name]:
        use_only_main_island = config[clean_method_name][
            "use_only_main_island"]

    delta_time = None
    if "delta_time" in config[clean_method_name]:
        delta_time = config[clean_method_name]["delta_time"]

    subarray_info = SubarrayDescription.from_hdf(args.input_file)
    tel_id = config["allowed_tels"][0] if "allowed_tels" in config else 1
    optics = subarray_info.tel[tel_id].optics
    camera_geom = subarray_info.tel[tel_id].camera.geometry

    dl1_container = DL1ParametersContainer()
    parameters_to_update = [
        'intensity', 'x', 'y', 'r', 'phi', 'length', 'width', 'psi',
        'skewness', 'kurtosis', 'concentration_cog', 'concentration_core',
        'concentration_pixel', 'leakage_intensity_width_1',
        'leakage_intensity_width_2', 'leakage_pixels_width_1',
        'leakage_pixels_width_2', 'n_islands', 'intercept', 'time_gradient',
        'n_pixels', 'wl', 'log_intensity'
    ]

    nodes_keys = get_dataset_keys(args.input_file)
    if args.no_image:
        nodes_keys.remove(dl1_images_lstcam_key)

    metadata = global_metadata()

    with tables.open_file(args.input_file, mode='r') as infile:
        image_table = infile.root[dl1_images_lstcam_key]
        dl1_params_input = infile.root[dl1_params_lstcam_key].colnames
        disp_params = {
            'disp_dx', 'disp_dy', 'disp_norm', 'disp_angle', 'disp_sign'
        }
        if set(dl1_params_input).intersection(disp_params):
            parameters_to_update.extend(disp_params)
        uncertainty_params = {'width_uncertainty', 'length_uncertainty'}
        if set(dl1_params_input).intersection(uncertainty_params):
            parameters_to_update.extend(uncertainty_params)

        if increase_nsb:
            rng = np.random.default_rng(
                infile.root.dl1.event.subarray.trigger.col('obs_id')[0])

        if increase_psf:
            set_numba_seed(
                infile.root.dl1.event.subarray.trigger.col('obs_id')[0])

        image_mask_save = not args.no_image and 'image_mask' in infile.root[
            dl1_images_lstcam_key].colnames

        with tables.open_file(args.output_file,
                              mode='a',
                              filters=HDF5_ZSTD_FILTERS) as outfile:
            copy_h5_nodes(infile, outfile, nodes=nodes_keys)
            add_source_filenames(outfile, [args.input_file])

            params = outfile.root[dl1_params_lstcam_key].read()
            if image_mask_save:
                image_mask = outfile.root[dl1_images_lstcam_key].col(
                    'image_mask')

            # need container to use lstchain.io.add_global_metadata and lstchain.io.add_config_metadata
            for k, item in metadata.as_dict().items():
                outfile.root[dl1_params_lstcam_key].attrs[k] = item
            outfile.root[dl1_params_lstcam_key].attrs["config"] = str(config)

            for ii, row in enumerate(image_table):

                dl1_container.reset()

                image = row['image']
                peak_time = row['peak_time']

                if increase_nsb:
                    # Add noise in pixels, to adjust MC to data noise levels.
                    # TO BE DONE: in case of "pedestal cleaning" (not used now
                    # in MC) we should recalculate picture_th above!
                    image = add_noise_in_pixels(rng, image,
                                                extra_noise_in_dim_pixels,
                                                extra_bias_in_dim_pixels,
                                                transition_charge,
                                                extra_noise_in_bright_pixels)
                if increase_psf:
                    image = random_psf_smearer(
                        image, smeared_light_fraction,
                        camera_geom.neighbor_matrix_sparse.indices,
                        camera_geom.neighbor_matrix_sparse.indptr)

                signal_pixels = tailcuts_clean(camera_geom, image, picture_th,
                                               boundary_th, isolated_pixels,
                                               min_n_neighbors)

                n_pixels = np.count_nonzero(signal_pixels)

                if n_pixels > 0:

                    # if delta_time has been set, we require at least one
                    # neighbor within delta_time to accept a pixel in the image:
                    if delta_time is not None:
                        cleaned_pixel_times = peak_time
                        # makes sure only signal pixels are used in the time
                        # check:
                        cleaned_pixel_times[~signal_pixels] = np.nan
                        new_mask = apply_time_delta_cleaning(
                            camera_geom, signal_pixels, cleaned_pixel_times, 1,
                            delta_time)
                        signal_pixels = new_mask

                    if use_dynamic_cleaning:
                        new_mask = apply_dynamic_cleaning(
                            image, signal_pixels, THRESHOLD_DYNAMIC_CLEANING,
                            FRACTION_CLEANING_SIZE)
                        signal_pixels = new_mask

                    # count a number of islands after all of the image cleaning steps
                    num_islands, island_labels = number_of_islands(
                        camera_geom, signal_pixels)
                    dl1_container.n_islands = num_islands

                    n_pixels_on_island = np.bincount(
                        island_labels.astype(np.int64))
                    n_pixels_on_island[
                        0] = 0  # first island is no-island and should not be considered
                    max_island_label = np.argmax(n_pixels_on_island)

                    if use_only_main_island:
                        signal_pixels[
                            island_labels != max_island_label] = False

                    # count the surviving pixels
                    n_pixels = np.count_nonzero(signal_pixels)
                    dl1_container.n_pixels = n_pixels

                    if n_pixels > 0:
                        parametrize_image(
                            image=image,
                            peak_time=peak_time,
                            signal_pixels=signal_pixels,
                            camera_geometry=camera_geom,
                            focal_length=optics.equivalent_focal_length,
                            dl1_container=dl1_container,
                        )

                if set(dl1_params_input).intersection(disp_params):
                    disp_dx, disp_dy, disp_norm, disp_angle, disp_sign = disp(
                        dl1_container['x'].to_value(u.m),
                        dl1_container['y'].to_value(u.m), params['src_x'][ii],
                        params['src_y'][ii])

                    dl1_container['disp_dx'] = disp_dx
                    dl1_container['disp_dy'] = disp_dy
                    dl1_container['disp_norm'] = disp_norm
                    dl1_container['disp_angle'] = disp_angle
                    dl1_container['disp_sign'] = disp_sign

                for p in parameters_to_update:
                    params[ii][p] = u.Quantity(dl1_container[p]).value

                if image_mask_save:
                    image_mask[ii] = signal_pixels

            outfile.root[dl1_params_lstcam_key][:] = params
            if image_mask_save:
                outfile.root[dl1_images_lstcam_key].modify_column(
                    colname='image_mask', column=image_mask)

        write_metadata(metadata, args.output_file)
コード例 #6
0
def main():
    std_config = get_standard_config()

    log.setLevel(logging.INFO)
    handler = logging.StreamHandler()
    logging.getLogger().addHandler(handler)

    if args.config_file is not None:
        config = replace_config(std_config,
                                read_configuration_file(args.config_file))
    else:
        config = std_config

    if args.pedestal_cleaning:
        print("Pedestal cleaning")
        clean_method_name = 'tailcuts_clean_with_pedestal_threshold'
        sigma = config[clean_method_name]['sigma']
        pedestal_thresh = get_threshold_from_dl1_file(args.input_file, sigma)
        cleaning_params = get_cleaning_parameters(config, clean_method_name)
        pic_th, boundary_th, isolated_pixels, min_n_neighbors = cleaning_params
        log.info(
            f"Fraction of pixel cleaning thresholds above picture thr.:"
            f"{np.sum(pedestal_thresh>pic_th) / len(pedestal_thresh):.3f}")
        picture_th = np.clip(pedestal_thresh, pic_th, None)
        log.info(f"Tailcut clean with pedestal threshold config used:"
                 f"{config['tailcuts_clean_with_pedestal_threshold']}")
    else:
        clean_method_name = 'tailcut'
        cleaning_params = get_cleaning_parameters(config, clean_method_name)
        picture_th, boundary_th, isolated_pixels, min_n_neighbors = cleaning_params
        log.info(f"Tailcut config used: {config['tailcut']}")

    use_only_main_island = True
    if "use_only_main_island" in config[clean_method_name]:
        use_only_main_island = config[clean_method_name][
            "use_only_main_island"]

    delta_time = None
    if "delta_time" in config[clean_method_name]:
        delta_time = config[clean_method_name]["delta_time"]

    foclen = OpticsDescription.from_name('LST').equivalent_focal_length
    cam_table = Table.read(args.input_file,
                           path="instrument/telescope/camera/LSTCam")
    camera_geom = CameraGeometry.from_table(cam_table)

    dl1_container = DL1ParametersContainer()
    parameters_to_update = [
        'intensity', 'x', 'y', 'r', 'phi', 'length', 'width', 'psi',
        'skewness', 'kurtosis', 'concentration_cog', 'concentration_core',
        'concentration_pixel', 'leakage_intensity_width_1',
        'leakage_intensity_width_2', 'leakage_pixels_width_1',
        'leakage_pixels_width_2', 'n_islands', 'intercept', 'time_gradient',
        'n_pixels', 'wl', 'log_intensity'
    ]

    nodes_keys = get_dataset_keys(args.input_file)
    if args.noimage:
        nodes_keys.remove(dl1_images_lstcam_key)

    auto_merge_h5files([args.input_file],
                       args.output_file,
                       nodes_keys=nodes_keys)

    with tables.open_file(args.input_file, mode='r') as input:
        image_table = input.root[dl1_images_lstcam_key]
        dl1_params_input = input.root[dl1_params_lstcam_key].colnames
        disp_params = {
            'disp_dx', 'disp_dy', 'disp_norm', 'disp_angle', 'disp_sign'
        }
        if set(dl1_params_input).intersection(disp_params):
            parameters_to_update.extend(disp_params)

        with tables.open_file(args.output_file, mode='a') as output:
            params = output.root[dl1_params_lstcam_key].read()
            for ii, row in enumerate(image_table):

                dl1_container.reset()

                image = row['image']
                peak_time = row['peak_time']

                signal_pixels = tailcuts_clean(camera_geom, image, picture_th,
                                               boundary_th, isolated_pixels,
                                               min_n_neighbors)

                n_pixels = np.count_nonzero(signal_pixels)
                if n_pixels > 0:
                    num_islands, island_labels = number_of_islands(
                        camera_geom, signal_pixels)
                    n_pixels_on_island = np.bincount(
                        island_labels.astype(np.int64))
                    n_pixels_on_island[
                        0] = 0  # first island is no-island and should not be considered
                    max_island_label = np.argmax(n_pixels_on_island)
                    if use_only_main_island:
                        signal_pixels[
                            island_labels != max_island_label] = False

                    # if delta_time has been set, we require at least one
                    # neighbor within delta_time to accept a pixel in the image:
                    if delta_time is not None:
                        cleaned_pixel_times = peak_time
                        # makes sure only signal pixels are used in the time
                        # check:
                        cleaned_pixel_times[~signal_pixels] = np.nan
                        new_mask = apply_time_delta_cleaning(
                            camera_geom, signal_pixels, cleaned_pixel_times, 1,
                            delta_time)
                        signal_pixels = new_mask

                    # count the surviving pixels
                    n_pixels = np.count_nonzero(signal_pixels)

                    if n_pixels > 0:
                        hillas = hillas_parameters(camera_geom[signal_pixels],
                                                   image[signal_pixels])

                        dl1_container.fill_hillas(hillas)
                        dl1_container.set_timing_features(
                            camera_geom[signal_pixels], image[signal_pixels],
                            peak_time[signal_pixels], hillas)

                        dl1_container.set_leakage(camera_geom, image,
                                                  signal_pixels)
                        dl1_container.set_concentration(
                            camera_geom, image, hillas)
                        dl1_container.n_islands = num_islands
                        dl1_container.wl = dl1_container.width / dl1_container.length
                        dl1_container.n_pixels = n_pixels
                        width = np.rad2deg(
                            np.arctan2(dl1_container.width, foclen))
                        length = np.rad2deg(
                            np.arctan2(dl1_container.length, foclen))
                        dl1_container.width = width
                        dl1_container.length = length
                        dl1_container.log_intensity = np.log10(
                            dl1_container.intensity)

                if set(dl1_params_input).intersection(disp_params):
                    disp_dx, disp_dy, disp_norm, disp_angle, disp_sign = disp(
                        dl1_container['x'].to_value(u.m),
                        dl1_container['y'].to_value(u.m), params['src_x'][ii],
                        params['src_y'][ii])

                    dl1_container['disp_dx'] = disp_dx
                    dl1_container['disp_dy'] = disp_dy
                    dl1_container['disp_norm'] = disp_norm
                    dl1_container['disp_angle'] = disp_angle
                    dl1_container['disp_sign'] = disp_sign

                for p in parameters_to_update:
                    params[ii][p] = u.Quantity(dl1_container[p]).value

            output.root[dl1_params_lstcam_key][:] = params
コード例 #7
0
def find_safe_threshold_from_dl1_file(dl1_path,
                                      config_file=None,
                                      max_fraction=0.04):
    """
    Function to obtain an integer value for the picture threshold such that
    at most a fraction max_fraction of pixels have a higher value resulting
    from the "clean_with_pedestal_threshold" cleaning approach. That approach
    increases the cleaning picture threshold of a pixel to, say, 2.5 standard
    deviations (or the number in "sigma" below) above its pedestal mean,
    hence pixels illuminated by stars get a higher threshold, and so we avoid
    too many spurious signals from the starlight fluctuations. The downside of
    the method is that it introduces non-uniformities in the camera response
    for the real data, and therefore data-MC discrepancies (there are no stars
    in MC and all pixels have the same cleaning settings).

    Here we try to calculate what should be the "base" picture threshold (to
    use both in MC and data) so that at most a given fraction "max_fraction"
    of the camera gets an increased threshold via the
    clean_with_pedestal_threshold condition. In this way the number /
    extension of camera inhomogeneities in the real data is limited. By
    default the max_fraction is 0.04, which e.g. gives a picture threshold
    around 8 for the Crab field (in no-moon conditions).

    Note: we want cleaning settings for a whole run, so we will have to run
    the function over sub-runs and average the values, or make the function
    able to read multiple DL1 files

    Parameters
    ----------
    dl1_path: real data DL1 file, to have access to the monitoring table
    where we can read the pedesta bias & std dev estimated with interleaved
    pedestal events

    config_file: must be the one used for the analysis of the real data,
    in particular, it has to contain the tailcuts_clean_with_pedestal_threshold
    setting (sigma) that one wants to use

    max_fraction: maximum fraction of camera pixels that are allowed to get a
    picture threshold above the base one. That is, we calculate here the base
    picture threshold that will ensure that the condition is fulfilled

    Returns
    -------
    (scalar) the value of the picture threshold that has to be used in data and
    MC to ensure that no more than max_fraction of the camera gets an
    increased value via tailcuts_clean_with_pedestal_threshold

    """
    std_config = get_standard_config()
    if config_file is not None:
        config = replace_config(std_config,
                                read_configuration_file(config_file))
    else:
        config = std_config

    cleaning_method = 'tailcuts_clean_with_pedestal_threshold'
    picture_th, _, _, _ = get_cleaning_parameters(config, cleaning_method)
    sigma = config[cleaning_method]['sigma']

    # Obtain the picture thresholds of pixels based on the "clean with
    # pedestal threshold" method:
    pic_threshold = get_threshold_from_dl1_file(dl1_path, sigma)
    threshold_sorted = np.sort(pic_threshold)

    # find the value new_threshold above which a fraction max_fraction of
    # pixels lies:
    index = int(len(threshold_sorted) * (1 - max_fraction))
    new_threshold = threshold_sorted[index]

    # Return the first integer value above new_threshold (to avoid too many
    # different cleaning settings in different runs):

    return np.ceil(new_threshold)