コード例 #1
0
def exe(word_vectors_file, vector_preloaded_path, test_path, sent,
        hidden_sizes, maxlen, mix):
    global word_vectors, vocabs
    if not maxlen:
        maxlen = properties.maxlen
    if word_vectors is None or vocabs is None:
        word_vectors, vocabs = utils.loadWordVectors(word_vectors_file,
                                                     vector_preloaded_path)
    if sent:
        if sent:
            test_x = [utils.make_sentence_idx(vocabs, sent.lower(), maxlen)]
            test_y = [1]
    else:
        #auto test path_file
        test_x, test_y = utils.load_file(test_path)
    if mix is 'Y':
        combined = LSTM_CNN(word_vectors, hidden_sizes=hidden_sizes)
        errors = combined.build_test_model((test_x, test_y, maxlen))
    else:
        lstm = Model(word_vectors, hidden_sizes=hidden_sizes)
        errors = lstm.build_test_model((test_x, test_y, maxlen))
    if sent:
        pred = errors
        if pred:
            print "sentiment is positive"
        else:
            print "sentiment is negative"
    elif errors:
        print("Accuracy of test is: %.5f %" % (1 - errors) * 100)
コード例 #2
0
def exe(word_vectors_file, vector_preloaded_path, train_path, dev_path,
        test_path, hsi, hso, maxlen, pep, fep, ppat, fpat, plr, flr, mix):
    global word_vectors, vocabs
    if os.path.exists(train_path) and os.path.exists(
            dev_path) and os.path.exists(test_path):
        train = utils.load_file(train_path)
        dev = utils.load_file(dev_path)
        test = utils.load_file(test_path)
    else:
        raise NotImplementedError()
    if word_vectors is None or vocabs is None:
        word_vectors, vocabs = utils.loadWordVectors(word_vectors_file,
                                                     vector_preloaded_path)
    if not maxlen:
        maxlen = properties.maxlen
    lstm = Model(word_vectors,
                 hidden_sizes=[hsi, hso],
                 epochs=pep,
                 patience=ppat,
                 learning_rate=plr)
    lstm_params = lstm.train(train, dev, test, maxlen)
    if mix is 'Y':
        combined = LSTM_CNN(word_vectors,
                            hidden_sizes=[hsi, hso],
                            epochs=fep,
                            lstm_params=lstm_params)
        combined.train(train, dev, test, maxlen)
コード例 #3
0
# Training
# ==================================================

with tf.Graph().as_default():
    session_conf = tf.ConfigProto(allow_soft_placement=True,
                                  log_device_placement=False)
    sess = tf.Session(config=session_conf)
    with sess.as_default():
        # embed()
        if (MODEL_TO_RUN == 0):
            model = CNN_LSTM(x_train.shape[1], y_train.shape[1],
                             len(vocab_processor.vocabulary_), embedding_dim,
                             filter_sizes, num_filters, l2_reg_lambda)
        elif (MODEL_TO_RUN == 1):
            model = LSTM_CNN(x_train.shape[1], y_train.shape[1],
                             len(vocab_processor.vocabulary_), embedding_dim,
                             filter_sizes, num_filters, l2_reg_lambda)
        elif (MODEL_TO_RUN == 2):
            model = CNN(x_train.shape[1], y_train.shape[1],
                        len(vocab_processor.vocabulary_), embedding_dim,
                        filter_sizes, num_filters, l2_reg_lambda)
        elif (MODEL_TO_RUN == 3):
            model = LSTM(x_train.shape[1], y_train.shape[1],
                         len(vocab_processor.vocabulary_), embedding_dim)
        else:
            print
            "PLEASE CHOOSE A VALID MODEL!\n0 = CNN_LSTM\n1 = LSTM_CNN\n2 = CNN\n3 = LSTM\n"
            exit()

        # Define Training procedure
        global_step = tf.Variable(0, name="global_step", trainable=False)
コード例 #4
0
with open("train_large.txt") as train_fnames:
    for line in train_fnames:
        train_f.append(line.split(" ")[0])
with open("test_large.txt") as test_fnames:
    for line in test_fnames:
        test_f.append(line.split(" ")[0])

# setup model
lstm_model = Basic_LSTM(num_units=80,
                        learning_rate=0.001,
                        dropout_rate=0.5,
                        debug=False)
lstm_cnn_model = LSTM_CNN(num_units=100,
                          learning_rate=0.001,
                          dropout_rate=0.5,
                          cnn_args={
                              'filter_size': 30,
                              'filter_num': 48
                          },
                          debug=False)
bilstm_model = BiLSTM(learning_rate=0.001, dropout_rate=0.5, debug=False)
deep_cnn_lstm_model = DeepCNN_LSTM(dropout_rate=0.0, reg_constant=0.01)
deeper_cnn_lstm_model = DeeperCNN_LSTM(dropout_rate=0.0, reg_constant=0.01)

# select which one to use
model = deep_cnn_lstm_model

# data config
D_config = {
    "batch_size": 90,
    "shuffle": False,
    "balance": False,
コード例 #5
0
ファイル: main.py プロジェクト: yanghoJI/2018_naver_hackathon
        dev_sample_index = -1 * int(config.dev_size * float(len(y)))
        x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[
            dev_sample_index:]
        y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[
            dev_sample_index:]
        print("Vocabulary Size: {:d}".format(len(vocabulary)))
        print("Train/Dev split: {:d}/{:d}".format(len(y_train), len(y_dev)))
    # model build
    print('{}'.format('#' * 30))
    print('model build')

    model = LSTM_CNN(
        sequence_length=8,
        num_classes=10,  # 여기서 class 개수를 수정해야 한다
        vocab_size=803087,
        embedding_size=config.embedding_dim,
        filter_sizes=list(map(int, config.filter_sizes.split(","))),
        num_filters=config.num_filters,
        l2_reg_lambda=config.l2_reg_lambda,
        num_hidden=config.hiddensize)

    # Define Training procedure
    global_step = tf.Variable(0, name="global_step", trainable=False)
    optimizer = tf.train.AdamOptimizer(config.lr)
    grads_and_vars = optimizer.compute_gradients(model.loss)
    train_op = optimizer.apply_gradients(grads_and_vars,
                                         global_step=global_step)

    print('{}'.format('#' * 30))
    print('sess open')
    sesstime = time.time()
コード例 #6
0
with tf.Graph().as_default():
    session_conf = tf.ConfigProto(allow_soft_placement=True,
                                  log_device_placement=False)
    sess = tf.Session(config=session_conf)
    with sess.as_default():
        #embed()
        if (MODEL_TO_RUN == 0):
            model = CNN_LSTM(x_train.shape[1], y_train.shape[1],
                             len(vocab_processor.vocabulary_), embedding_dim,
                             filter_sizes, num_filters, l2_reg_lambda)
        elif (MODEL_TO_RUN == 1):
            model = LSTM_CNN(max_seq_legth,
                             1,
                             n_symbols,
                             embedding_dim,
                             filter_sizes,
                             num_filters,
                             l2_reg_lambda,
                             weight=embedding_weights)
        elif (MODEL_TO_RUN == 2):
            model = CNN(x_train.shape[1], y_train.shape[1],
                        len(vocab_processor.vocabulary_), embedding_dim,
                        filter_sizes, num_filters, l2_reg_lambda)
        elif (MODEL_TO_RUN == 3):
            model = LSTM(x_train.shape[1], y_train.shape[1],
                         len(vocab_processor.vocabulary_), embedding_dim)
        else:
            print(
                "PLEASE CHOOSE A VALID MODEL!\n0 = CNN_LSTM\n1 = LSTM_CNN\n2 = CNN\n3 = LSTM\n"
            )
            exit()
コード例 #7
0
ファイル: modlamp_train.py プロジェクト: 1073521013/PSL-DL
print(y_train.shape)
# Training
# ==================================================

with tf.Graph().as_default():
    session_conf = tf.ConfigProto(allow_soft_placement=True,
                                  log_device_placement=False)
    sess = tf.Session(config=session_conf)
    with sess.as_default():
        # embed()
        if (MODEL_TO_RUN == 0):
            model = CNN_LSTM(x_train.shape[1], y_train.shape[1], embedding_dim,
                             filter_sizes, num_filters, num_hidden)
        elif (MODEL_TO_RUN == 1):
            model = LSTM_CNN(x_train.shape[1], y_train.shape[1], 21,
                             embedding_dim, filter_sizes, num_filters,
                             l2_reg_lambda)
        elif (MODEL_TO_RUN == 2):
            model = CNN(x_train.shape[1], y_train.shape[1], 26, embedding_dim,
                        filter_sizes, num_filters, l2_reg_lambda)
        elif (MODEL_TO_RUN == 3):
            model = LSTM(x_train.shape[1], y_train.shape[1], 26, embedding_dim)
        else:
            print
            "PLEASE CHOOSE A VALID MODEL!\n0 = CNN_LSTM\n1 = LSTM_CNN\n2 = CNN\n3 = LSTM\n"
            exit()

        # Define Training procedure
        global_step = tf.Variable(0, name="global_step", trainable=False)
        optimizer = tf.train.AdamOptimizer(1e-3)
        grads_and_vars = optimizer.compute_gradients(model.loss)
コード例 #8
0
def train(x_train, y_train, vocab_processor, x_dev, y_dev, embedding):
    # Training
    # ==================================================

    with tf.Graph().as_default():
        session_conf = tf.ConfigProto(
            allow_soft_placement=FLAGS.allow_soft_placement,
            log_device_placement=FLAGS.log_device_placement)
        sess = tf.Session(config=session_conf)
        with sess.as_default():
#            cnn = TextCNN(
#                sequence_length=x_train.shape[1],
#                num_classes=y_train.shape[1],
#                vocab_size=len(vocab_processor.vocabulary_),
#                embedding_size=FLAGS.embedding_dim,
#                filter_sizes=list(map(int, FLAGS.filter_sizes.split(","))),
#                num_filters=FLAGS.num_filters,
#                l2_reg_lambda=FLAGS.l2_reg_lambda)
            lstm_cnn = LSTM_CNN(x_train.shape[1],
                                y_train.shape[1],
                                len(vocab_processor.vocabulary_),
                                embedding_dim = FLAGS.embedding_dim,
                                filter_sizes= list(map(int, FLAGS.filter_sizes.split(","))),
                                num_filters=FLAGS.num_filters,
                                l2_reg_lambda=FLAGS.l2_reg_lambda)

            # Define Training procedure
            global_step = tf.Variable(0, name="global_step", trainable=False)
            optimizer = tf.train.AdamOptimizer(1e-3)
            grads_and_vars = optimizer.compute_gradients(lstm_cnn.loss)
            train_op = optimizer.apply_gradients(grads_and_vars, global_step=global_step)

            # Keep track of gradient values and sparsity (optional)
            grad_summaries = []
            for g, v in grads_and_vars:
                if g is not None:
                    grad_hist_summary = tf.summary.histogram("{}/grad/hist".format(v.name), g)
                    sparsity_summary = tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
                    grad_summaries.append(grad_hist_summary)
                    grad_summaries.append(sparsity_summary)
            grad_summaries_merged = tf.summary.merge(grad_summaries)

            # Output directory for models and summaries
            timestamp = str(int(time.time()))
            out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", timestamp))
            print("Writing to {}\n".format(out_dir))

            # Summaries for loss and accuracy
            loss_summary = tf.summary.scalar("loss", lstm_cnn.loss)
            acc_summary = tf.summary.scalar("accuracy", lstm_cnn.accuracy)

            # Train Summaries
            train_summary_op = tf.summary.merge([loss_summary, acc_summary, grad_summaries_merged])
            train_summary_dir = os.path.join(out_dir, "summaries", "train")
            train_summary_writer = tf.summary.FileWriter(train_summary_dir, sess.graph)

            # Dev summaries
            dev_summary_op = tf.summary.merge([loss_summary, acc_summary])
            dev_summary_dir = os.path.join(out_dir, "summaries", "dev")
            dev_summary_writer = tf.summary.FileWriter(dev_summary_dir, sess.graph)

            # Checkpoint directory. Tensorflow assumes this directory already exists so we need to create it
            checkpoint_dir = os.path.abspath(os.path.join(out_dir, "checkpoints"))
            checkpoint_prefix = os.path.join(checkpoint_dir, "model")
            if not os.path.exists(checkpoint_dir):
                os.makedirs(checkpoint_dir)
            saver = tf.train.Saver(tf.global_variables(), max_to_keep=FLAGS.num_checkpoints)

            # Write vocabulary
            vocab_processor.save(os.path.join(out_dir, "vocab"))

            # Initialize all variables
            init = tf.global_variables_initializer()

            sess.run(lstm_cnn.embedding_init, feed_dict={lstm_cnn.embedding_placeholder: embedding})
            sess.run(init)

            def train_step(x_batch, y_batch):
                """
                A single training step
                """
                feed_dict = {
                    lstm_cnn.input_x: x_batch,
                    lstm_cnn.input_y: y_batch,
                    lstm_cnn.dropout_keep_prob: FLAGS.dropout_keep_prob
                }
                _, step, summaries, loss, accuracy = sess.run(
                    [train_op, global_step, train_summary_op, lstm_cnn.loss, lstm_cnn.accuracy],
                    feed_dict)
                time_str = datetime.datetime.now().isoformat()
                print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
                train_summary_writer.add_summary(summaries, step)

            def dev_step(x_batch, y_batch, writer=None):
                """
                Evaluates model on a dev set
                """
                feed_dict = {
                    lstm_cnn.input_x: x_batch,
                    lstm_cnn.input_y: y_batch,
                    lstm_cnn.dropout_keep_prob: 1.0
                }
                step, summaries, loss, accuracy = sess.run(
                    [global_step, dev_summary_op, lstm_cnn.loss, lstm_cnn.accuracy],
                    feed_dict)
                time_str = datetime.datetime.now().isoformat()
                print("{}: step {}, loss {:g}, acc {:g}".format(time_str, step, loss, accuracy))
                if writer:
                    writer.add_summary(summaries, step)

            # Generate batches
            batches = data_helpers.batch_iter(
                list(zip(x_train, y_train)), FLAGS.batch_size, FLAGS.num_epochs)
            # Training loop. For each batch...
            for batch in batches:
                x_batch, y_batch = zip(*batch)
                train_step(x_batch, y_batch)
                current_step = tf.train.global_step(sess, global_step)
                if current_step % FLAGS.evaluate_every == 0:
                    print("\nEvaluation:")
                    dev_step(x_dev, y_dev, writer=dev_summary_writer)
                    print("")
                if current_step % FLAGS.checkpoint_every == 0:
                    path = saver.save(sess, checkpoint_prefix, global_step=current_step)
                    print("Saved model checkpoint to {}\n".format(path))
コード例 #9
0
ファイル: cross_validation.py プロジェクト: 1073521013/PSL-DL
    y_tr = y_train[train_index].astype(np.int32)
    y_val = y_train[val_index].astype(np.int32)

    print("Validation shape: {}".format(X_val.shape))
    print("Training shape: {}".format(X_tr.shape))
    with tf.Graph().as_default():
        session_conf = tf.ConfigProto(allow_soft_placement=True,
                                      log_device_placement=False)
        sess = tf.Session(config=session_conf)
        with sess.as_default():
            #embed()
            if (MODEL_TO_RUN == 0):
                model = CNN_LSTM(seq_legth, num_classes, embedding_dim,
                                 filter_sizes, num_filters)
            elif (MODEL_TO_RUN == 1):
                model = LSTM_CNN(seq_legth, num_classes, embedding_dim,
                                 filter_sizes, num_filters, num_hidden)
        #        elif (MODEL_TO_RUN == 2):
        #            model = CNN(x_train.shape[1],y_train.shape[1],len(vocab_processor.vocabulary_),
        #                        embedding_dim,filter_sizes,num_filters,l2_reg_lambda)
        #        elif (MODEL_TO_RUN == 3):
        #            model = LSTM(x_train.shape[1],y_train.shape[1],len(vocab_processor.vocabulary_),embedding_dim)
            else:
                print(
                    "PLEASE CHOOSE A VALID MODEL!\n0 = CNN_LSTM\n1 = LSTM_CNN\n2 = CNN\n3 = LSTM\n"
                )
                exit()

            # Define Training procedure
            global_step = tf.Variable(0, name="global_step", trainable=False)
            optimizer = tf.train.AdamOptimizer()
            grads_and_vars = optimizer.compute_gradients(model.loss)
コード例 #10
0
x_shuffled = x[shuffle_indices]
y_shuffled = y[shuffle_indices]

dev_sample_index = -1 * int(config.DEV_SIZE * float(len(y)))
x_train, x_dev = x_shuffled[:dev_sample_index], x_shuffled[dev_sample_index:]
y_train, y_dev = y_shuffled[:dev_sample_index], y_shuffled[dev_sample_index:]
logger.info("Vocabulary Size: {:d}".format(len(vocab_processor.vocabulary_)))
logger.info("Train/Dev split: {:d}/{:d}".format(len(y_train), len(y_dev)))

with tf.Graph().as_default():
    session_conf = tf.ConfigProto(allow_soft_placement=True,
                                  log_device_placement=False)
    sess = tf.Session(config=session_conf)
    with sess.as_default():
        model = LSTM_CNN(x_train.shape[1], y_train.shape[1],
                         len(vocab_processor.vocabulary_), embedding_dim,
                         config.FILTER_SIZE, config.NUM_FILTERS,
                         config.L2_REG_LAMBDA)

        # Define Training procedure
        global_step = tf.Variable(0, name="global_step", trainable=False)
        optimizer = tf.train.AdamOptimizer(1e-3)
        grads_and_vars = optimizer.compute_gradients(model.loss)
        train_op = optimizer.apply_gradients(grads_and_vars,
                                             global_step=global_step)

        # Keep track of gradient values and sparsity (optional)
        grad_summaries = []
        for g, v in grads_and_vars:
            if g is not None:
                grad_hist_summary = tf.summary.histogram(
                    "{}/grad/hist".format(v.name), g)