temperature(a), temperature((a + b) % 10), temperature((a + b) // 10) ]) x = np.array(x) y = np.array(y) test_x = np.array(test_x) test_y = np.array(test_y) model = LSTMModel(4, [20, 20], 12, 9) model.train(x, y, x, y, 10, 5000) results = model.predict(test_x) activations_0 = model.getActivations(0, test_x) activations_1 = model.getActivations(1, test_x) count = 0 for index, result in enumerate(results): right = temperatureToInt(result[2]) left = temperatureToInt(result[3]) rightTarget = temperatureToInt(test_y[index][2]) leftTarget = temperatureToInt(test_y[index][3]) if left == leftTarget and right == rightTarget: count += 1 renderResults("temperature", results, test_x, activations_0, activations_1)
y.append([ one_hot(c), one_hot(b), one_hot(a), one_hot((a + b + c) % 10), one_hot((a + b + c) // 10) ]) x = np.array(x) y = np.array(y) model = LSTMModel(5, [10, 10], 12, 12) model.train(x, y, x, y, 10, 5000) results = model.predict(x) activations_0 = model.getActivations(0, x) activations_1 = model.getActivations(1, x) count = 0 for index, result in enumerate(results): left = argmax(result[3]) right = argmax(result[4]) leftTarget = argmax(y[index][3]) rightTarget = argmax(y[index][4]) if left == leftTarget and right == rightTarget: count += 1 for i in range(10): renderResults("symbols-activations-multi-" + str(i),