コード例 #1
0
ファイル: deep.py プロジェクト: Suke0/AlphaRefine
    def initialize(self):

        if isinstance(self.pool_stride, int) and self.pool_stride == 1:
            self.pool_stride = [1] * len(self.output_layers)

        self.layer_stride = {'vggconv1': 2, 'conv1': 2, 'layer1': 4, 'layer2': 8, 'layer3': 16, 'layer4': 32,
                             'fc': None}
        self.layer_dim = {'vggconv1': 96, 'conv1': 64, 'layer1': 64, 'layer2': 128, 'layer3': 256, 'layer4': 512,
                          'fc': None}

        self.mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, -1, 1, 1)
        self.std = torch.Tensor([0.229, 0.224, 0.225]).view(1, -1, 1, 1)

        if os.path.isabs(self.net_path):
            net_path_full = [self.net_path]
        else:
            root_paths = env_settings().network_path
            if isinstance(root_paths, str):
                root_paths = [root_paths]
            net_path_full = [os.path.join(root, self.net_path) for root in root_paths]

        self.net = None
        for net_path in net_path_full:
            try:
                self.net = resnet18_vggmconv1(self.output_layers, path=net_path)
                break
            except:
                pass
        if self.net is None:
            raise Exception('Did not find network file {}'.format(self.net_path))

        if self.use_gpu:
            self.net.cuda()
        self.net.eval()
コード例 #2
0
ファイル: deep.py プロジェクト: ngunnar/pytracking
    def initialize(self, im):
        if os.path.isabs(self.net_path):
            net_path_full = self.net_path
        else:
            net_path_full = os.path.join(env_settings().network_path,
                                         self.net_path)

        if isinstance(self.pool_stride, int) and self.pool_stride == 1:
            self.pool_stride = [1] * len(self.output_layers)

        self.layer_stride = {
            'vggconv1': 2,
            'conv1': 2,
            'layer1': 4,
            'layer2': 8,
            'layer3': 16,
            'layer4': 32,
            'fc': None
        }
        self.layer_dim = {
            'vggconv1': 96,
            'conv1': 64,
            'layer1': 64,
            'layer2': 128,
            'layer3': 256,
            'layer4': 512,
            'fc': None
        }

        #self.mean = torch.Tensor([0.485, 0.456, 0.406]).view(1,-1,1,1)
        #self.std = torch.Tensor([0.229, 0.224, 0.225]).view(1,-1,1,1)
        im = im / 255
        self.mean = torch.Tensor([
            torch.mean(im[:, 0, ...]),
            torch.mean(im[:, 1, ...]),
            torch.mean(im[:, 2, ...])
        ]).view(1, -1, 1, 1)
        self.std = torch.Tensor([
            torch.std(im[:, 0, ...]),
            torch.std(im[:, 1, ...]),
            torch.std(im[:, 2, ...])
        ]).view(1, -1, 1, 1)

        self.net = resnet18_vggmconv1(self.output_layers, path=net_path_full)
        if self.use_gpu:
            self.net.cuda(self.gpu_device) if not (
                self.gpu_device is None) else self.net.cuda()
        self.net.eval()