コード例 #1
0
ファイル: search.py プロジェクト: vandanab/LocalExperts
def topicsearch(query):
  global topic_searcher_, LAST_QUERY, LAST_RESPONSE 

  if DEBUG:
    print "Raw Query: ", query

  analyzer = PerFieldAnalyzerWrapper(StandardAnalyzer(Version.LUCENE_CURRENT))
  analyzer.addAnalyzer("loc", KeywordAnalyzer(Version.LUCENE_CURRENT))
  #analyzer = StandardAnalyzer(Version.LUCENE_CURRENT)
  parsed_query = process_query(query)
  if parsed_query is None:
    return ""

  #create query for lucene
  real_query = text_query = parsed_query["text_query"]
  parsed_query["real_query"] = real_query

  if DEBUG:
    print "Real Query: ", real_query

  if LAST_QUERY == real_query:
    return LAST_RESPONSE

  #parse query using lucene parser and get docs
  p_query = QueryParser(Version.LUCENE_CURRENT, "text", analyzer).parse(real_query)
  print str(p_query)
  scoreDocs = topic_searcher_.search(p_query, 500).scoreDocs
  print "%s total matching documents." % len(scoreDocs)
 
  #rank results
  experts = []
  rankedDocs = rankDocs_topic(parsed_query, topic_searcher_, scoreDocs)

  for i in rankedDocs:
    if parsed_query["profile"] == "yes":
      experts.append({"u": i["user"], "d": i["details"],
                      "p": i["profile"]})
    else:
      experts.append({"u": i["user"], "d": i["details"]})

  response = {"sid": str(uuid.uuid1()), "es": experts}
  
  if "with_request" in parsed_query and parsed_query["with_request"] == "yes":
    response = {"q": parsed_query, "e": experts}

  if "user_study" in parsed_query and parsed_query["user_study"] == "yes":
    #write session to db
    session = {"q": text_query, "l": parsed_query["location"],
              "_id": response["sid"], "ur": {}}
    conn = Connection("wheezy.cs.tamu.edu", 27017)
    db = conn["ole_evaluation"]
    db["user_response"].insert(session)
  #print response

  LAST_QUERY = real_query
  LAST_RESPONSE = cjson.encode(response)

  #return cjson.encode(response)
  return LAST_RESPONSE
コード例 #2
0
    def testPerFieldAnalyzer(self):

        analyzer = PerFieldAnalyzerWrapper(SimpleAnalyzer())
        analyzer.addAnalyzer("partnum", KeywordAnalyzer())

        query = QueryParser(Version.LUCENE_CURRENT, "description",
                            analyzer).parse("partnum:Q36 AND SPACE")
        scoreDocs = self.searcher.search(query, 50).scoreDocs

        #self.assertEqual("+partnum:Q36 +space", query.toString("description"))
        self.assertEqual(1, len(scoreDocs), "doc found!")
コード例 #3
0
    def testPerFieldAnalyzer(self):

        analyzer = PerFieldAnalyzerWrapper(SimpleAnalyzer())
        analyzer.addAnalyzer("partnum", KeywordAnalyzer())

        query = QueryParser(Version.LUCENE_CURRENT, "description",
                            analyzer).parse("partnum:Q36 AND SPACE")
        scoreDocs = self.searcher.search(query, 50).scoreDocs

        #self.assertEqual("+partnum:Q36 +space", query.toString("description"))
        self.assertEqual(1, len(scoreDocs), "doc found!")
コード例 #4
0
def build_perfield_analyzer(index_fields):
    """
    This function creates a PerFieldAnalyzerWrapper which allows us 
    to associate different Lucene Analyzers to specific fields in our 
    Lucene index. 
    """
    analyzer = PerFieldAnalyzerWrapper(StandardAnalyzer(Version.LUCENE_CURRENT))

    for (index_name, analyzer_type) in index_fields.iteritems():
        if analyzer_type == "standard":
            continue

        analyzer.addAnalyzer(index_name, ANALYZER_LOOKUP.get(analyzer_type))
        
    return analyzer                    
コード例 #5
0
def build_perfield_analyzer(index_fields):
    """
    This function creates a PerFieldAnalyzerWrapper which allows us 
    to associate different Lucene Analyzers to specific fields in our 
    Lucene index. 
    """
    analyzer = PerFieldAnalyzerWrapper(StandardAnalyzer(
        Version.LUCENE_CURRENT))

    for (index_name, analyzer_type) in index_fields.iteritems():
        if analyzer_type == "standard":
            continue

        analyzer.addAnalyzer(index_name, ANALYZER_LOOKUP.get(analyzer_type))

    return analyzer
コード例 #6
0
    def testAnalyzer(self):

        analyzer = StandardAnalyzer(Version.LUCENE_CURRENT)
        queryString = "category:/philosophy/eastern"

        query = QueryParser(Version.LUCENE_CURRENT,
                            "contents", analyzer).parse(queryString)

        self.assertEqual("category:\"philosophy eastern\"",
                         query.toString("contents"), "path got split, yikes!")

        perFieldAnalyzer = PerFieldAnalyzerWrapper(analyzer)
        perFieldAnalyzer.addAnalyzer("category", WhitespaceAnalyzer())
        query = QueryParser(Version.LUCENE_CURRENT,
                            "contents", perFieldAnalyzer).parse(queryString)

        self.assertEqual("category:/philosophy/eastern",
                         query.toString("contents"),
                         "leave category field alone")
コード例 #7
0
    def testAnalyzer(self):

        analyzer = StandardAnalyzer(Version.LUCENE_CURRENT)
        queryString = "category:/philosophy/eastern"

        parser = QueryParser(Version.LUCENE_CURRENT, "contents", analyzer)
        parser.setAutoGeneratePhraseQueries(True)
        query = parser.parse(queryString)

        self.assertEqual("category:\"philosophy eastern\"",
                         query.toString("contents"), "path got split, yikes!")

        perFieldAnalyzer = PerFieldAnalyzerWrapper(analyzer)
        perFieldAnalyzer.addAnalyzer("category", WhitespaceAnalyzer())
        query = QueryParser(Version.LUCENE_CURRENT, "contents",
                            perFieldAnalyzer).parse(queryString)

        self.assertEqual("category:/philosophy/eastern",
                         query.toString("contents"),
                         "leave category field alone")
コード例 #8
0
ファイル: indexer.py プロジェクト: vandanab/LocalExperts
  # running as foreground process
  #indexer.setDaemon(True)
  #indexer.start()
  #print 'Starting Indexer in background...'

  # If return from Searcher, then call the signal handler to clean up the indexer cleanly
  quit_gracefully()
  """
  
  # what directory we want to index
  directoryToWalk = dir_user_location_map
  
  env=lucene.initVM()
  # For now I just use the StandardAnalyzer, but you can change this
  #analyzer = StandardAnalyzer(Version.LUCENE_CURRENT)
  analyzer = PerFieldAnalyzerWrapper(StandardAnalyzer(Version.LUCENE_CURRENT))
  analyzer.addAnalyzer("loc", UnderscoreSeparatorAnalyzer(Version.LUCENE_CURRENT))
  
  """
  #location indexer
  LOCATION_INDEX_STORE_DIR = location_index_store_dir
  print location_index_store_dir
  location_index_dir = createIndexDir(LOCATION_INDEX_STORE_DIR)
  # we will need a writer
  writer = IndexWriter(location_index_dir, analyzer, True,
                       IndexWriter.MaxFieldLength.LIMITED)
  writer.setMaxFieldLength(1048576)
  # and start the indexer
  location_indexer = LocationIndexer(LOCATION_INDEX_STORE_DIR, writer, directoryToWalk)
  location_indexer.run()
  writer.close()
コード例 #9
0
ファイル: search.py プロジェクト: vandanab/LocalExperts
def search(query=None):
  global location_searcher_, LAST_QUERY, LAST_RESPONSE
  if DEBUG:
    print "Raw Query: ", query

  analyzer = PerFieldAnalyzerWrapper(StandardAnalyzer(Version.LUCENE_CURRENT))
  analyzer.addAnalyzer("loc", KeywordAnalyzer(Version.LUCENE_CURRENT))
  #analyzer = StandardAnalyzer(Version.LUCENE_CURRENT)
  parsed_query = process_query(query, "l")
  if parsed_query is None:
    return ""
  
  #create query for lucene
  real_query = ""
  locations = {}
  if "epsilon" in parsed_query:
    locations = get_nearby_locations(parsed_query["location"], parsed_query["epsilon"])
  else:
    locations = get_nearby_locations(parsed_query["location"], 0)	
  parsed_query["locations"] = locations

  if len(locations.keys()) == 1:
    real_query = real_query + "\"" + parsed_query["location"] + "\""
  else:
    """
    locations_query = []
    for l in locations:
      locations_query.append(l + "^" + str(locations[l]["dwt"]))
    real_query = real_query + " OR ".join(locations_query)
    """
    real_query = real_query + " OR ".join(["\"" + l + "\"" for l in locations])

  parsed_query["real_query"] = real_query
  
  if DEBUG:
    print "Lucene Query: ", real_query

  if LAST_QUERY == real_query:
    return LAST_RESPONSE
  
  #parse query using lucene parser and get docs
  p_query = QueryParser(Version.LUCENE_CURRENT, "loc", analyzer).parse(real_query)
  scoreDocs = location_searcher_.search(p_query, 500).scoreDocs
  print "%s total matching documents." % len(scoreDocs)

  #rank results
  experts = []
  rankedDocs = rankDocs(parsed_query, location_searcher_, scoreDocs)

  for i in rankedDocs:
    if parsed_query["profile"] == "yes":
      experts.append({"u": i["user"], "d": i["details"],
                      "p": i["profile"], "t": i["tweets"]})
    else:
      experts.append({"u": i["user"], "d": i["details"]})

  response = {"sid": str(uuid.uuid1()), "es": experts}
  
  if "with_request" in parsed_query and parsed_query["with_request"] == "yes":
    response = {"q": parsed_query, "e": experts}

  if "user_study" in parsed_query and parsed_query["user_study"] == "yes":
    #write session to db
    session = {"l": parsed_query["location"],
              "_id": response["sid"], "ur": {}}
    conn = Connection("wheezy.cs.tamu.edu", 27017)
    db = conn["ole_evaluation"]
    db["user_response"].insert(session)

  LAST_QUERY = real_query
  LAST_RESPONSE = cjson.encode(response)
  
  #return cjson.encode(response)
  return LAST_RESPONSE