def create_input(self, t_input=None, forget_xy_shape=True): """Create input tensor.""" if t_input is None: t_input = tf.placeholder(tf.float32, self.image_shape) t_prep_input = t_input if len(t_prep_input.shape) == 3: t_prep_input = tf.expand_dims(t_prep_input, 0) if forget_xy_shape: t_prep_input = forget_xy(t_prep_input) lo, hi = self.image_value_range t_prep_input = lo + t_prep_input * (hi - lo) return t_input, t_prep_input
def create_input(self, t_input=None, forget_xy_shape=True): """Create input tensor.""" if t_input is None: t_input = tf.placeholder(tf.float32, self.image_shape) t_prep_input = t_input if len(t_prep_input.shape) == 3: t_prep_input = tf.expand_dims(t_prep_input, 0) if forget_xy_shape: t_prep_input = model_util.forget_xy(t_prep_input) if hasattr(self, "is_BGR") and self.is_BGR is True: t_prep_input = tf.reverse(t_prep_input, [-1]) lo, hi = self.image_value_range t_prep_input = lo + t_prep_input * (hi - lo) return t_input, t_prep_input