def _build(self, image, gt_boxes=None, is_training=False): if gt_boxes is not None: gt_boxes = tf.cast(gt_boxes, tf.float32) image.set_shape((None, None, 3)) conv_feature_map = self.base_network( tf.expand_dims(image, 0), is_training=is_training ) # The RPN submodule which generates proposals of objects. self._rpn = RPN( self._num_anchors, self._config.model.rpn, debug=self._debug, seed=self._seed ) if self._with_rcnn: self._rcnn = RCNN( self._num_classes, self._config.model.rcnn, debug=self._debug, seed=self._seed ) image_shape = tf.shape(image)[0:2] variable_summaries( conv_feature_map, 'conv_feature_map', 'reduced' ) all_anchors = self._generate_anchors(tf.shape(conv_feature_map)) rpn_prediction = self._rpn( conv_feature_map, image_shape, all_anchors, gt_boxes=gt_boxes, is_training=is_training ) prediction_dict = { 'rpn_prediction': rpn_prediction, } if self._debug: prediction_dict['image'] = image prediction_dict['image_shape'] = image_shape prediction_dict['all_anchors'] = all_anchors prediction_dict['anchor_reference'] = tf.convert_to_tensor( self._anchor_reference ) if gt_boxes is not None: prediction_dict['gt_boxes'] = gt_boxes prediction_dict['conv_feature_map'] = conv_feature_map if self._with_rcnn: proposals = tf.stop_gradient(rpn_prediction['proposals']) classification_pred = self._rcnn( conv_feature_map, proposals, image_shape, self.base_network, gt_boxes=gt_boxes, is_training=is_training ) prediction_dict['classification_prediction'] = classification_pred return prediction_dict
def testFocalL1Loss(self): """Tests that focal & smooth l1 for classification, regression loss respectively returns reasonable values in simple cases. """ config = self.config config["loss"] = {"type": "focal"} model = RPN(self.num_anchors, config, debug=True) # Define placeholders that are used inside the loss method. rpn_cls_prob = tf.placeholder(tf.float32) rpn_cls_target = tf.placeholder(tf.float32) rpn_cls_score = tf.placeholder(tf.float32) rpn_bbox_target = tf.placeholder(tf.float32) rpn_bbox_pred = tf.placeholder(tf.float32) loss = model.loss({ "rpn_cls_prob": rpn_cls_prob, "rpn_cls_target": rpn_cls_target, "rpn_cls_score": rpn_cls_score, "rpn_bbox_target": rpn_bbox_target, "rpn_bbox_pred": rpn_bbox_pred, }) # Test perfect score. with self.test_session() as sess: sess.run(tf.global_variables_initializer()) loss_dict = sess.run( loss, feed_dict={ # Probability is (background_prob, foreground_prob) rpn_cls_prob: [[0, 1], [1.0, 0]], # Target: 1 being foreground, 0 being background. rpn_cls_target: [1, 0], # Class scores before applying softmax. Since using cross # entropy, we need a big difference between values. rpn_cls_score: [[-100.0, 100.0], [100.0, -100.0]], # Targets and predictions are exactly equal. rpn_bbox_target: [[0.1, 0.1, 0.1, 0.1], [0.1, 0.1, 0.1, 0.1]], rpn_bbox_pred: [[0.1, 0.1, 0.1, 0.1], [0.1, 0.1, 0.1, 0.1]], }, ) # Assert close since cross-entropy could return very small value. self.assertAllClose(tuple(loss_dict.values()), (0, 0))
def testLoss(self): """Tests that loss returns reasonable values in simple cases. """ model = RPN( self.num_anchors, self.config, debug=True ) # Define placeholders that are used inside the loss method. rpn_cls_prob = tf.placeholder(tf.float32) rpn_cls_target = tf.placeholder(tf.float32) rpn_cls_score = tf.placeholder(tf.float32) rpn_bbox_target = tf.placeholder(tf.float32) rpn_bbox_pred = tf.placeholder(tf.float32) loss = model.loss({ 'rpn_cls_prob': rpn_cls_prob, 'rpn_cls_target': rpn_cls_target, 'rpn_cls_score': rpn_cls_score, 'rpn_bbox_target': rpn_bbox_target, 'rpn_bbox_pred': rpn_bbox_pred, }) # Test perfect score. with self.test_session() as sess: sess.run(tf.global_variables_initializer()) loss_dict = sess.run(loss, feed_dict={ # Probability is (background_prob, foreground_prob) rpn_cls_prob: [[0, 1], [1., 0]], # Target: 1 being foreground, 0 being background. rpn_cls_target: [1, 0], # Class scores before applying softmax. Since using cross # entropy, we need a big difference between values. rpn_cls_score: [[-100., 100.], [100., -100.]], # Targets and predictions are exactly equal. rpn_bbox_target: [[0.1, 0.1, 0.1, 0.1], [0.1, 0.1, 0.1, 0.1]], rpn_bbox_pred: [[0.1, 0.1, 0.1, 0.1], [0.1, 0.1, 0.1, 0.1]], }) # Assert close since cross-entropy could return very small value. self.assertAllClose(tuple(loss_dict.values()), (0, 0))
def _build(self, image, gt_boxes=None, is_training=False): """ Returns bounding boxes and classification probabilities. Args: image: A tensor with the image. Its shape should be `(height, width, 3)`. gt_boxes: A tensor with all the ground truth boxes of that image. Its shape should be `(num_gt_boxes, 5)` Where for each gt box we have (x1, y1, x2, y2, label), in that order. is_training: A boolean to whether or not it is used for training. Returns: classification_prob: A tensor with the softmax probability for each of the bounding boxes found in the image. Its shape should be: (num_bboxes, num_categories + 1) classification_bbox: A tensor with the bounding boxes found. It's shape should be: (num_bboxes, 4). For each of the bboxes we have (x1, y1, x2, y2) """ if gt_boxes is not None: gt_boxes = tf.cast(gt_boxes, tf.float32) # A Tensor with the feature map for the image, # its shape should be `(feature_height, feature_width, 512)`. # The shape depends of the pretrained network in use. # Set rank and last dimension before using base network # TODO: Why does it loose information when using queue? image.set_shape((None, None, 3)) conv_feature_map = self.base_network(tf.expand_dims(image, 0), is_training=is_training) # The RPN submodule which generates proposals of objects. self._rpn = RPN( self._num_anchors, self._config.model.rpn, debug=self._debug, seed=self._seed, ) if self._with_rcnn: # The RCNN submodule which classifies RPN's proposals and # classifies them as background or a specific class. self._rcnn = RCNN( self._num_classes, self._config.model.rcnn, debug=self._debug, seed=self._seed, ) image_shape = tf.shape(image)[0:2] variable_summaries(conv_feature_map, "conv_feature_map", "reduced") # Generate anchors for the image based on the anchor reference. all_anchors = self._generate_anchors(tf.shape(conv_feature_map)) rpn_prediction = self._rpn( conv_feature_map, image_shape, all_anchors, gt_boxes=gt_boxes, is_training=is_training, ) prediction_dict = { "rpn_prediction": rpn_prediction, } if self._debug: prediction_dict["image"] = image prediction_dict["image_shape"] = image_shape prediction_dict["all_anchors"] = all_anchors prediction_dict["anchor_reference"] = tf.convert_to_tensor( self._anchor_reference) if gt_boxes is not None: prediction_dict["gt_boxes"] = gt_boxes prediction_dict["conv_feature_map"] = conv_feature_map if self._with_rcnn: proposals = tf.stop_gradient(rpn_prediction["proposals"]) classification_pred = self._rcnn( conv_feature_map, proposals, image_shape, self.base_network, gt_boxes=gt_boxes, is_training=is_training, ) prediction_dict["classification_prediction"] = classification_pred return prediction_dict
class FasterRCNN(snt.AbstractModule): """Faster RCNN Network module Builds the Faster RCNN network architecture using different submodules. Calculates the total loss of the model based on the different losses by each of the submodules. It is also responsible for building the anchor reference which is used in graph for generating the dynamic anchors. """ def __init__(self, config, name="fasterrcnn"): super(FasterRCNN, self).__init__(name=name) # Main configuration object, it holds not only the necessary # information for this module but also configuration for each of the # different submodules. self._config = config # Total number of classes to classify. If not using RCNN then it is not # used. TODO: Make it *more* optional. self._num_classes = config.model.network.num_classes # Generate network with RCNN thus allowing for classification of # objects and not just finding them. self._with_rcnn = config.model.network.with_rcnn # Turn on debug mode with returns more Tensors which can be used for # better visualization and (of course) debugging. self._debug = config.train.debug self._seed = config.train.seed # Anchor config, check out the docs of base_config.yml for a better # understanding of how anchors work. self._anchor_base_size = config.model.anchors.base_size self._anchor_scales = np.array(config.model.anchors.scales) self._anchor_ratios = np.array(config.model.anchors.ratios) self._anchor_stride = config.model.anchors.stride # Anchor reference for building dynamic anchors for each image in the # computation graph. self._anchor_reference = generate_anchors_reference( self._anchor_base_size, self._anchor_ratios, self._anchor_scales) # Total number of anchors per point. self._num_anchors = self._anchor_reference.shape[0] # Weights used to sum each of the losses of the submodules self._rpn_cls_loss_weight = config.model.loss.rpn_cls_loss_weight self._rpn_reg_loss_weight = config.model.loss.rpn_reg_loss_weights self._rcnn_cls_loss_weight = config.model.loss.rcnn_cls_loss_weight self._rcnn_reg_loss_weight = config.model.loss.rcnn_reg_loss_weights self._losses_collections = ["fastercnn_losses"] # We want the pretrained model to be outside the FasterRCNN name scope. self.base_network = TruncatedBaseNetwork(config.model.base_network) def _build(self, image, gt_boxes=None, is_training=False): """ Returns bounding boxes and classification probabilities. Args: image: A tensor with the image. Its shape should be `(height, width, 3)`. gt_boxes: A tensor with all the ground truth boxes of that image. Its shape should be `(num_gt_boxes, 5)` Where for each gt box we have (x1, y1, x2, y2, label), in that order. is_training: A boolean to whether or not it is used for training. Returns: classification_prob: A tensor with the softmax probability for each of the bounding boxes found in the image. Its shape should be: (num_bboxes, num_categories + 1) classification_bbox: A tensor with the bounding boxes found. It's shape should be: (num_bboxes, 4). For each of the bboxes we have (x1, y1, x2, y2) """ if gt_boxes is not None: gt_boxes = tf.cast(gt_boxes, tf.float32) # A Tensor with the feature map for the image, # its shape should be `(feature_height, feature_width, 512)`. # The shape depends of the pretrained network in use. # Set rank and last dimension before using base network # TODO: Why does it loose information when using queue? image.set_shape((None, None, 3)) conv_feature_map = self.base_network(tf.expand_dims(image, 0), is_training=is_training) # The RPN submodule which generates proposals of objects. self._rpn = RPN( self._num_anchors, self._config.model.rpn, debug=self._debug, seed=self._seed, ) if self._with_rcnn: # The RCNN submodule which classifies RPN's proposals and # classifies them as background or a specific class. self._rcnn = RCNN( self._num_classes, self._config.model.rcnn, debug=self._debug, seed=self._seed, ) image_shape = tf.shape(image)[0:2] variable_summaries(conv_feature_map, "conv_feature_map", "reduced") # Generate anchors for the image based on the anchor reference. all_anchors = self._generate_anchors(tf.shape(conv_feature_map)) rpn_prediction = self._rpn( conv_feature_map, image_shape, all_anchors, gt_boxes=gt_boxes, is_training=is_training, ) prediction_dict = { "rpn_prediction": rpn_prediction, } if self._debug: prediction_dict["image"] = image prediction_dict["image_shape"] = image_shape prediction_dict["all_anchors"] = all_anchors prediction_dict["anchor_reference"] = tf.convert_to_tensor( self._anchor_reference) if gt_boxes is not None: prediction_dict["gt_boxes"] = gt_boxes prediction_dict["conv_feature_map"] = conv_feature_map if self._with_rcnn: proposals = tf.stop_gradient(rpn_prediction["proposals"]) classification_pred = self._rcnn( conv_feature_map, proposals, image_shape, self.base_network, gt_boxes=gt_boxes, is_training=is_training, ) prediction_dict["classification_prediction"] = classification_pred return prediction_dict def loss(self, prediction_dict, return_all=False): """Compute the joint training loss for Faster RCNN. Args: prediction_dict: The output dictionary of the _build method from which we use two different main keys: rpn_prediction: A dictionary with the output Tensors from the RPN. classification_prediction: A dictionary with the output Tensors from the RCNN. Returns: If `return_all` is False, a tensor for the total loss. If True, a dict with all the internal losses (RPN's, RCNN's, regularization and total loss). """ with tf.name_scope("losses"): rpn_loss_dict = self._rpn.loss(prediction_dict["rpn_prediction"]) # Losses have a weight assigned, we multiply by them before saving # them. rpn_loss_dict["rpn_cls_loss"] = (rpn_loss_dict["rpn_cls_loss"] * self._rpn_cls_loss_weight) rpn_loss_dict["rpn_reg_loss"] = (rpn_loss_dict["rpn_reg_loss"] * self._rpn_reg_loss_weight) prediction_dict["rpn_loss_dict"] = rpn_loss_dict if self._with_rcnn: rcnn_loss_dict = self._rcnn.loss( prediction_dict["classification_prediction"]) rcnn_loss_dict["rcnn_cls_loss"] = ( rcnn_loss_dict["rcnn_cls_loss"] * self._rcnn_cls_loss_weight) rcnn_loss_dict["rcnn_reg_loss"] = ( rcnn_loss_dict["rcnn_reg_loss"] * self._rcnn_reg_loss_weight) prediction_dict["rcnn_loss_dict"] = rcnn_loss_dict else: rcnn_loss_dict = {} all_losses_items = list(rpn_loss_dict.items()) + list( rcnn_loss_dict.items()) for loss_name, loss_tensor in all_losses_items: tf.summary.scalar(loss_name, loss_tensor, collections=self._losses_collections) # We add losses to the losses collection instead of manually # summing them just in case somebody wants to use it in another # place. tf.losses.add_loss(loss_tensor) # Regularization loss is automatically saved by TensorFlow, we log # it differently so we can visualize it independently. regularization_loss = tf.losses.get_regularization_loss() # Total loss without regularization no_reg_loss = tf.losses.get_total_loss( add_regularization_losses=False) total_loss = tf.losses.get_total_loss() tf.summary.scalar("total_loss", total_loss, collections=self._losses_collections) tf.summary.scalar("no_reg_loss", no_reg_loss, collections=self._losses_collections) tf.summary.scalar( "regularization_loss", regularization_loss, collections=self._losses_collections, ) if return_all: loss_dict = { "total_loss": total_loss, "no_reg_loss": no_reg_loss, "regularization_loss": regularization_loss, } for loss_name, loss_tensor in all_losses_items: loss_dict[loss_name] = loss_tensor return loss_dict # We return the total loss, which includes: # - rpn loss # - rcnn loss (if activated) # - regularization loss return total_loss def _generate_anchors(self, feature_map_shape): """Generate anchor for an image. Using the feature map, the output of the pretrained network for an image, and the anchor_reference generated using the anchor config values. We generate a list of anchors. Anchors are just fixed bounding boxes of different ratios and sizes that are uniformly generated throught the image. Args: feature_map_shape: Shape of the convolutional feature map used as input for the RPN. Should be (batch, height, width, depth). Returns: all_anchors: A flattened Tensor with all the anchors of shape `(num_anchors_per_points * feature_width * feature_height, 4)` using the (x1, y1, x2, y2) convention. """ with tf.variable_scope("generate_anchors"): grid_width = feature_map_shape[2] # width grid_height = feature_map_shape[1] # height shift_x = tf.range(grid_width) * self._anchor_stride shift_y = tf.range(grid_height) * self._anchor_stride shift_x, shift_y = tf.meshgrid(shift_x, shift_y) shift_x = tf.reshape(shift_x, [-1]) shift_y = tf.reshape(shift_y, [-1]) shifts = tf.stack([shift_x, shift_y, shift_x, shift_y], axis=0) shifts = tf.transpose(shifts) # Shifts now is a (H x W, 4) Tensor # Expand dims to use broadcasting sum. all_anchors = np.expand_dims(self._anchor_reference, axis=0) + tf.expand_dims(shifts, axis=1) # Flatten all_anchors = tf.reshape(all_anchors, (-1, 4)) return all_anchors @property def summary(self): """ Generate merged summary of all the sub-summaries used inside the Faster R-CNN network. """ summaries = [ tf.summary.merge_all(key="rpn"), ] summaries.append(tf.summary.merge_all(key=self._losses_collections[0])) if self._with_rcnn: summaries.append(tf.summary.merge_all(key="rcnn")) return tf.summary.merge(summaries) @property def vars_summary(self): return { key: tf.summary.merge_all(key=collection) for key, collections in VAR_LOG_LEVELS.items() for collection in collections } def get_trainable_vars(self): """Get trainable vars included in the module.""" trainable_vars = snt.get_variables_in_module(self) if self._config.model.base_network.trainable: pretrained_trainable_vars = self.base_network.get_trainable_vars() if len(pretrained_trainable_vars): tf.logging.info("Training {} vars from pretrained module; " 'from "{}" to "{}".'.format( len(pretrained_trainable_vars), pretrained_trainable_vars[0].name, pretrained_trainable_vars[-1].name, )) else: tf.logging.info("No vars from pretrained module to train.") trainable_vars += pretrained_trainable_vars else: tf.logging.info("Not training variables from pretrained module") return trainable_vars def get_base_network_checkpoint_vars(self): return self.base_network.get_base_network_checkpoint_vars() def get_checkpoint_file(self): return self.base_network.get_checkpoint_file()
def testBasic(self): """Tests shapes are consistent with anchor generation. """ model = RPN(self.num_anchors, self.config, debug=True) # (plus the batch number) pretrained_output_shape = (1, 32, 32, 512) pretrained_output = tf.placeholder(tf.float32, shape=pretrained_output_shape) # Estimate image shape from the pretrained output and the anchor stride image_shape_val = ( int(pretrained_output_shape[1] * self.stride), int(pretrained_output_shape[2] * self.stride), ) # Use 4 ground truth boxes. gt_boxes_shape = (4, 4) gt_boxes = tf.placeholder(tf.float32, shape=gt_boxes_shape) image_shape_shape = (2, ) image_shape = tf.placeholder(tf.float32, shape=image_shape_shape) # Total anchors depends on the pretrained output shape and the total # number of anchors per point. total_anchors = (pretrained_output_shape[1] * pretrained_output_shape[2] * self.num_anchors) all_anchors_shape = (total_anchors, 4) all_anchors = tf.placeholder(tf.float32, shape=all_anchors_shape) layers = model(pretrained_output, image_shape, all_anchors, gt_boxes=gt_boxes) with self.test_session() as sess: # As in the case of a real session we need to initialize the # variables. sess.run(tf.global_variables_initializer()) layers_inst = sess.run( layers, feed_dict={ # We don't really care about the value of the pretrained output # only that has the correct shape. pretrained_output: np.random.rand(*pretrained_output_shape), # Generate random but valid ground truth boxes. gt_boxes: generate_gt_boxes(gt_boxes_shape[0], image_shape_val), # Generate anchors from a reference and the shape of the # pretrained_output. all_anchors: generate_anchors( generate_anchors_reference(self.base_size, self.ratios, self.scales), 16, pretrained_output_shape[1:3]), image_shape: image_shape_val, }) # Class score generates 2 values per anchor. rpn_cls_score_shape = layers_inst['rpn_cls_score'].shape rpn_cls_score_true_shape = (total_anchors, 2) self.assertEqual(rpn_cls_score_shape, rpn_cls_score_true_shape) # Probs have the same shape as cls scores. rpn_cls_prob_shape = layers_inst['rpn_cls_prob'].shape self.assertEqual(rpn_cls_prob_shape, rpn_cls_score_true_shape) # We check softmax with the sum of the output. rpn_cls_prob_sum = layers_inst['rpn_cls_prob'].sum(axis=1) self.assertAllClose(rpn_cls_prob_sum, np.ones(total_anchors)) # Proposals and scores are related to the output of the NMS with # limits. total_proposals = layers_inst['proposals'].shape[0] total_scores = layers_inst['scores'].shape[0] # Check we don't get more than top_n proposals. self.assertGreaterEqual(self.config.proposals.post_nms_top_n, total_proposals) # Check we get a score for each proposal. self.assertEqual(total_proposals, total_scores) # Check that we get a regression for each anchor. self.assertEqual(layers_inst['rpn_bbox_pred'].shape, (total_anchors, 4)) # Check that we get a target for each regression for each anchor. self.assertEqual(layers_inst['rpn_bbox_target'].shape, (total_anchors, 4)) # Check that we get a target class for each anchor. self.assertEqual(layers_inst['rpn_cls_target'].shape, (total_anchors, )) # Check that targets are composed of [-1, 0, 1] only. rpn_cls_target = layers_inst['rpn_cls_target'] self.assertEqual(tuple(np.sort(np.unique(rpn_cls_target))), (-1, 0., 1.)) batch_cls_target = rpn_cls_target[(rpn_cls_target == 0.) | (rpn_cls_target == 1.)] # Check that the non negative target class are exactly the size # as the minibatch self.assertEqual(batch_cls_target.shape, (self.config.target.minibatch_size, )) # Check that we get upto foreground_fraction of positive anchors. self.assertLessEqual( batch_cls_target[batch_cls_target == 1.].shape[0] / batch_cls_target.shape[0], self.config.target.foreground_fraction)
def testTypes(self): """Tests that return types are the expected ones. """ # We repeat testBasic's setup. model = RPN(self.num_anchors, self.config, debug=True) pretrained_output_shape = (1, 32, 32, 512) pretrained_output = tf.placeholder(tf.float32, shape=pretrained_output_shape) image_shape_val = ( int(pretrained_output_shape[1] * self.stride), int(pretrained_output_shape[2] * self.stride), ) gt_boxes_shape = (4, 4) gt_boxes = tf.placeholder(tf.float32, shape=gt_boxes_shape) image_shape_shape = (2, ) image_shape = tf.placeholder(tf.float32, shape=image_shape_shape) total_anchors = (pretrained_output_shape[1] * pretrained_output_shape[2] * self.num_anchors) all_anchors_shape = (total_anchors, 4) all_anchors = tf.placeholder(tf.float32, shape=all_anchors_shape) layers = model(pretrained_output, image_shape, all_anchors, gt_boxes=gt_boxes) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) layers_inst = sess.run( layers, feed_dict={ pretrained_output: np.random.rand(*pretrained_output_shape), gt_boxes: generate_gt_boxes(gt_boxes_shape[0], image_shape_val), all_anchors: generate_anchors( generate_anchors_reference(self.base_size, self.ratios, self.scales), 16, pretrained_output_shape[1:3]), image_shape: image_shape_val, }) # Assertions proposals = layers_inst['proposals'] scores = layers_inst['scores'] rpn_cls_prob = layers_inst['rpn_cls_prob'] rpn_cls_score = layers_inst['rpn_cls_score'] rpn_bbox_pred = layers_inst['rpn_bbox_pred'] rpn_cls_target = layers_inst['rpn_cls_target'] rpn_bbox_target = layers_inst['rpn_bbox_target'] # Everything should have dtype=tf.float32 self.assertAllEqual( # We have 7 values we want to compare to tf.float32. [tf.float32] * 7, [ proposals.dtype, scores.dtype, rpn_cls_prob.dtype, rpn_cls_score.dtype, rpn_bbox_pred.dtype, rpn_cls_target.dtype, rpn_bbox_target.dtype, ])
def _build(self, image, gt_boxes=None, is_training=False): """ Returns bounding boxes and classification probabilities. Args: image: A tensor with the image. Its shape should be `(height, width, 3)`. gt_boxes: A tensor with all the ground truth boxes of that image. Its shape should be `(num_gt_boxes, 5)` Where for each gt box we have (x1, y1, x2, y2, label), in that order. is_training: A boolean to whether or not it is used for training. Returns: classification_prob: A tensor with the softmax probability for each of the bounding boxes found in the image. Its shape should be: (num_bboxes, num_categories + 1) classification_bbox: A tensor with the bounding boxes found. It's shape should be: (num_bboxes, 4). For each of the bboxes we have (x1, y1, x2, y2) """ #### use variable_scope to split BodyDetector and PartDetector if gt_boxes is not None: gt_boxes = tf.cast(gt_boxes, tf.float32) # A Tensor with the feature map for the image, # its shape should be `(feature_height, feature_width, 512)`. # The shape depends of the pretrained network in use. # Set rank and last dimension before using base network # TODO: Why does it loose information when using queue? image.set_shape((None, None, 3)) conv_feature_map = self.base_network( tf.expand_dims(image, 0), is_training=is_training ) C4 = conv_feature_map with tf.variable_scope("C5"): C5 = self.iter_unify_layer(C4, is_training=is_training) #C5 = self.unify_layer(C4, is_training=is_training) with tf.variable_scope("Head_body_part"): Head_body_part = self.iter_unify_layer(C5, is_training=is_training) #Head_body_part = self.unify_layer(C5, is_training=is_training) with tf.variable_scope("Head_hf_part"): Head_hf_part = self.iter_unify_layer(C5, is_training=is_training) #Head_hf_part = self.unify_layer(C5, is_training=is_training) with tf.variable_scope("Head_hf_part_conv"): Head_hf_part_conv = self.iter_unify_layer( Head_hf_part, is_training=is_training ) # The RPN submodule which generates proposals of objects. self._rpn = RPN( self._num_anchors, self._config.model.rpn, debug=self._debug, seed=self._seed ) if self._with_rcnn: # The RCNN submodule which classifies RPN's proposals and # classifies them as background or a specific class. self._rcnn = RCNN( self._num_classes, self._config.model.rcnn, debug=self._debug, seed=self._seed, name="__rcnn__1" ) image_shape = tf.shape(image)[0:2] variable_summaries( conv_feature_map, 'conv_feature_map', 'reduced' ) # Generate anchors for the image based on the anchor reference. all_anchors_1 = self._generate_anchors(tf.shape(conv_feature_map)) rpn_1_prediction = self._rpn( conv_feature_map, image_shape, all_anchors_1, gt_boxes=gt_boxes, is_training=is_training ) prediction_1_dict = { 'rpn_prediction': rpn_1_prediction, } if self._debug: prediction_1_dict['image'] = image prediction_1_dict['image_shape'] = image_shape prediction_1_dict['all_anchors'] = all_anchors_1 prediction_1_dict['anchor_reference'] = tf.convert_to_tensor( self._anchor_reference ) if gt_boxes is not None: prediction_1_dict['gt_boxes'] = gt_boxes prediction_1_dict['conv_feature_map'] = conv_feature_map if self._with_rcnn: proposals = tf.stop_gradient(rpn_1_prediction['proposals']) rpn_1_proposals = proposals classification_pred = self._rcnn( Head_body_part, proposals, image_shape, self.base_network, gt_boxes=gt_boxes, is_training=is_training ) #### retrieve req from classification_pred without_filter_dict = classification_pred["without_filter_dict"] objects_1_all = without_filter_dict["objects"] labels_1_all = without_filter_dict["proposal_label"] probs_1_all = without_filter_dict["proposal_label_prob"] objects_1 = classification_pred["objects"] labels_1 = classification_pred["labels"] probs_1 = classification_pred["probs"] prediction_1_dict['objects'] = objects_1 prediction_1_dict['labels'] = labels_1 prediction_1_dict['probs'] = probs_1 top_indices = tf.nn.top_k(tf.cast(1 - tf.sign(tf.abs(labels_1_all - self._main_part_label)), dtype=tf.float32) + probs_1_all, k = tf.shape(labels_1_all)[0]).indices objects_1_sorted = tf.gather(objects_1_all ,top_indices) filter_num = tf.minimum(tf.shape(objects_1_sorted)[0], 7) objects_1_filtered = tf.slice(objects_1_sorted, begin=[0, 0], size=[filter_num, 4]) #### expand with label [?, 4] -> [?, 5] objects_1_filtered = tf.concat([objects_1_filtered, tf.fill([tf.shape(objects_1_filtered)[0], 1], value=tf.convert_to_tensor(self._main_part_label, dtype=tf.float32))], axis=-1) prediction_1_dict['classification_prediction'] = classification_pred if gt_boxes is not None: body_feature_ground_truth = self.generate_PartDetector_features( input_image=image, input_feature=Head_hf_part, gt_boxes = gt_boxes, only_main_part_boxes=False ) body_feature_pred = self.generate_PartDetector_features( input_image=image, input_feature=Head_hf_part, gt_boxes=tf.concat([tf.gather(gt_boxes, tf.reshape(tf.where(tf.not_equal(gt_boxes[:, -1], self._main_part_label)), [-1])), objects_1_filtered], axis=0) ,only_main_part_boxes=False) else: body_feature_ground_truth = None body_feature_pred = self.generate_PartDetector_features( input_image=image, input_feature=Head_hf_part, gt_boxes=objects_1_filtered, only_main_part_boxes=True ) #### use as fake placeholder if gt_boxes is not None: body_feature_pred = tf.reshape(body_feature_pred, [-1, tf.shape(body_feature_ground_truth)[-1]]) else: body_feature_pred = tf.reshape(body_feature_pred, [-1, 147461]) #### unstack it in firxt dim and "map reduce" it on modified faster-rcnn #### but the input ground truth label should perform label remapping is the "decoder" of single feature fixed_sliced_size ,PartDetector_feature_stacked = self.padding_and_slice_PartDetector_features(body_pred_feature=body_feature_pred, body_ground_truth_feature=body_feature_ground_truth) PartDetector_feature_stacked = tf.slice(PartDetector_feature_stacked, begin=[0, 0], size=[fixed_sliced_size, -1]) if gt_boxes is not None: PartDetector_feature_stacked = tf.gather(PartDetector_feature_stacked, tf.random_shuffle(tf.range(fixed_sliced_size))) PartDetector_feature_stacked = tf.reshape(PartDetector_feature_stacked, [fixed_sliced_size, -1]) PartDetector_feature_unstacked = [PartDetector_feature_stacked[0,...]] else: PartDetector_feature_unstacked = tf.unstack(PartDetector_feature_stacked, axis=0) partdetector_dict_list = [] for single_partdetector_feature in PartDetector_feature_unstacked: if gt_boxes is not None: main_part_ori_bbox ,cropped_feature, cropped_bboxes = self.decode_single_unstacked_feature(input_feature=single_partdetector_feature, only_main_part_boxes = True if gt_boxes is None else False) else: main_part_ori_bbox, cropped_feature = self.decode_single_unstacked_feature(input_feature=single_partdetector_feature, only_main_part_boxes = True if gt_boxes is None else False) cropped_bboxes = None x1, y1, x2, y2 ,_ = tf.split(main_part_ori_bbox, 5) x1, y1, x2, y2 = map(lambda x: tf.cast(tf.reshape(x, []), tf.int32), [x1, y1, x2, y2]) cropped_image = tf.image.crop_to_bounding_box(image=image, offset_height=y1, offset_width=x1, target_height=y2 - y1 + 1, target_width=x2 - x1 + 1) cropped_feature = tf.expand_dims(cropped_feature, 0) input_feature = Head_hf_part_conv image_h, image_w = tf.split(tf.shape(image)[0:2], num_or_size_splits=2) feature_h, feature_w = tf.split(tf.shape(input_feature)[1:3], num_or_size_splits=2) t4 = [x1, y1, x2, y2] Head_hf_part_conv = tf.slice(input_feature, begin=[0, tf.reshape(tf.cast(tf.cast(t4[1], tf.float32) / tf.cast(image_h, tf.float32) * tf.cast(feature_h, tf.float32), tf.int32), []), tf.reshape(tf.cast(tf.cast(t4[0], tf.float32) / tf.cast(image_w, tf.float32) * tf.cast(feature_w, tf.float32), tf.int32), []), 0], size=[-1, tf.reshape(tf.cast(tf.cast(t4[3] - t4[1], tf.float32)/ tf.cast(image_h, tf.float32) * tf.cast(feature_h, tf.float32), tf.int32), []) , tf.reshape(tf.cast(tf.cast(t4[2] - t4[0], tf.float32) / tf.cast(image_w, tf.float32) * tf.cast(feature_w, tf.float32), tf.int32), []) , 256] ) #### Head_hf_part_conv not crop, test the efficiency partdetector_dict = self.partdetetor(conv_feature_map = cropped_feature, Head_hf_part_conv = Head_hf_part_conv ,image = cropped_image, gt_boxes = cropped_bboxes, is_training = is_training) partdetector_dict["main_info"] = { "image": image, "main_part_ori_bbox": main_part_ori_bbox } partdetector_dict_list.append(partdetector_dict) return [prediction_1_dict] + partdetector_dict_list
class DetectorInDetector(snt.AbstractModule): """Faster RCNN Network module Builds the Faster RCNN network architecture using different submodules. Calculates the total loss of the model based on the different losses by each of the submodules. It is also responsible for building the anchor reference which is used in graph for generating the dynamic anchors. """ def edit_main_config_into_PartDetector_config(self, config): #### some others config edit will be add in the feature. req_config = deepcopy(config) req_config.model.network.num_classes = config.model.network.num_classes - 1 return req_config def __init__(self, config, name='fasterrcnn'): super(DetectorInDetector, self).__init__(name=name) # Main configuration object, it holds not only the necessary # information for this module but also configuration for each of the # different submodules. self._config = config #### some settings should add in config self._main_part_label = config.model.main_part_label self._main_part_prob_threshold = config.model.main_part_prob_threshold #### # Total number of classes to classify. If not using RCNN then it is not # used. TODO: Make it *more* optional. self._num_classes = config.model.network.num_classes # Generate network with RCNN thus allowing for classification of # objects and not just finding them. self._with_rcnn = config.model.network.with_rcnn # Turn on debug mode with returns more Tensors which can be used for # better visualization and (of course) debugging. self._debug = config.train.debug self._seed = config.train.seed # Anchor config, check out the docs of base_config.yml for a better # understanding of how anchors work. self._anchor_base_size = config.model.anchors.base_size self._anchor_scales = np.array(config.model.anchors.scales) self._anchor_ratios = np.array(config.model.anchors.ratios) self._anchor_stride = config.model.anchors.stride # Anchor reference for building dynamic anchors for each image in the # computation graph. self._anchor_reference = generate_anchors_reference( self._anchor_base_size, self._anchor_ratios, self._anchor_scales ) # Total number of anchors per point. self._num_anchors = self._anchor_reference.shape[0] # Weights used to sum each of the losses of the submodules self._rpn_cls_loss_weight = config.model.loss.rpn_cls_loss_weight self._rpn_reg_loss_weight = config.model.loss.rpn_reg_loss_weights self._rcnn_cls_loss_weight = config.model.loss.rcnn_cls_loss_weight self._rcnn_reg_loss_weight = config.model.loss.rcnn_reg_loss_weights self._losses_collections = ['fastercnn_losses'] # We want the pretrained model to be outside the FasterRCNN name scope. self.base_network = TruncatedBaseNetwork(config.model.base_network) #### init of PartFasterRCNN partdetector_config = self.edit_main_config_into_PartDetector_config(config) self.partdetetor = PartFasterRCNN(partdetector_config) self._class_max_detections = config.model.rcnn.proposals.class_max_detections self._class_nms_threshold = config.model.rcnn.proposals.class_nms_threshold self._total_max_detections = config.model.rcnn.proposals.total_max_detections def iter_unify_layer(self, inputs, is_training = False, layer_num = 3): for i in range(layer_num): if i != layer_num - 1: inputs = self.unify_layer(inputs, is_training, return_final=False) else: inputs = self.unify_layer(inputs, is_training, return_final=True) return inputs def unify_layer(self, inputs, is_training = False, return_final = False, filters = 256): conv_part = tf.layers.conv2d( inputs = inputs, filters = 256, kernel_size = (3, 3), strides=(1, 1), padding='same', ) if return_final: return tf.nn.relu(tf.layers.batch_normalization( inputs=conv_part, trainable=is_training )) else: return conv_part def padding_and_slice_PartDetector_features(self, body_pred_feature, body_ground_truth_feature, fixed_slice_size = 7): if body_ground_truth_feature is not None: concat_t = tf.concat([body_pred_feature, body_ground_truth_feature], axis = 0) fixed_slice_size = tf.minimum(tf.shape(concat_t)[0], fixed_slice_size) return (fixed_slice_size ,tf.slice(concat_t, begin=[0, 0], size = [fixed_slice_size, -1])) else: concat_t = body_pred_feature have_num = tf.minimum(tf.shape(concat_t)[0], fixed_slice_size) concat_t = tf.cond(tf.greater(fixed_slice_size, have_num), true_fn=lambda : tf.concat([concat_t, tf.zeros(shape=[fixed_slice_size - have_num, tf.shape(concat_t)[1]], dtype=tf.float32)], axis=0), false_fn=lambda : tf.slice(concat_t, begin=[0, 0], size = [fixed_slice_size, -1])) return (fixed_slice_size, concat_t) #### gt_boxes contain the part_annoations and (BodyDetector's top some body detections or ground truth body annotations, # the latter for padding require. merge this two conclusions and padding and slice to fixed size for __call___ the # PartDetector, the first version is only use ground truth body annotation's) def generate_PartDetector_features(self, input_image, input_feature, gt_boxes, only_main_part_boxes = False): assert only_main_part_boxes in [True, False] main_part_label = self._main_part_label image_h, image_w = tf.split(tf.shape(input_image)[0:2], num_or_size_splits=2) feature_h, feature_w = tf.split(tf.shape(input_feature)[1:3], num_or_size_splits=2) main_part_gt_boxes = tf.boolean_mask(gt_boxes ,tf.reshape(tf.equal(gt_boxes[...,-1], main_part_label), [-1])) if not only_main_part_boxes: not_main_part_gt_boxes = tf.boolean_mask(gt_boxes ,tf.reshape(tf.logical_not(tf.equal(gt_boxes[...,-1], main_part_label)), [-1])) iou_tensor = bbox_overlap_tf(main_part_gt_boxes[:, :4], not_main_part_gt_boxes[:, :4]) reproduce_iou = iou_tensor > tf.constant(0.0, dtype=tf.float32) intersection_indexes = tf.where(reproduce_iou) intersection_indexes = tf.cast(intersection_indexes, dtype=tf.int32) #### total_shape [ 1 + 24 * 24 * 1024 + 7 * 5] = [589860] def single_patch_image(patch_dict ,image_resize = (24, 24) ,bboxes_padding_range = 7.0): image = patch_dict["image"] im_shape = tf.shape(image) shape_prod = im_shape[0] * im_shape[1] * im_shape[2] image = tf.cond( tf.greater(shape_prod, 0), true_fn=lambda : tf.image.resize_images(tf.expand_dims(image, 0), size=image_resize), false_fn=lambda : tf.zeros(shape=[1 ,24, 24, 256], dtype=tf.float32) ) image = tf.layers.max_pooling2d( inputs = image, pool_size = (2, 2), strides = (1, 1), padding='same', ) image_flatten = tf.reshape(image, [-1]) if not only_main_part_boxes: bboxes = tf.cast(patch_dict["bboxes"], dtype=tf.float32) bboxes = bboxes[:tf.cast(bboxes_padding_range, tf.int32), ...] num_bboxes = tf.cast(tf.shape(bboxes)[0], tf.float32) bboxes_padding = tf.concat([bboxes, tf.zeros(shape=[tf.cast(bboxes_padding_range - num_bboxes, dtype=tf.int32), 5])], axis=0) bboxes_flatten = tf.reshape(bboxes_padding, [-1]) num_bboxes = tf.reshape(num_bboxes, [-1]) return tf.concat([num_bboxes, image_flatten, bboxes_flatten], axis=0) return image_flatten def single_map(main_index): t4 = tf.reshape(tf.cast(main_part_gt_boxes[main_index][:4], tf.int32), [-1]) #return t4 if not only_main_part_boxes: bbox = tf.cast(tf.gather(not_main_part_gt_boxes, tf.reshape(tf.gather(intersection_indexes[:, -1] ,tf.where(tf.equal(intersection_indexes[:, 0], main_index))), [-1])), dtype=tf.int32) bbox = bbox[:, :5] patch_bbox_conclusion = patch_image( image=input_image, bboxes=bbox, offset_width=t4[0], offset_height=t4[1], target_width=t4[2] - t4[0] + 1, target_height=t4[3] - t4[1] + 1 ) bboxes_patched = patch_bbox_conclusion["bboxes"] else: bboxes_patched = None patch_feature_conclusion = tf.slice(input_feature, begin=[0, tf.reshape(tf.cast(tf.cast(t4[1], tf.float32) / tf.cast(image_h, tf.float32) * tf.cast(feature_h, tf.float32), tf.int32), []), tf.reshape(tf.cast(tf.cast(t4[0], tf.float32) / tf.cast(image_w, tf.float32) * tf.cast(feature_w, tf.float32), tf.int32), []), 0], size=[-1, tf.reshape(tf.cast(tf.cast(t4[3] - t4[1], tf.float32)/ tf.cast(image_h, tf.float32) * tf.cast(feature_h, tf.float32), tf.int32), []) , tf.reshape(tf.cast(tf.cast(t4[2] - t4[0], tf.float32) / tf.cast(image_w, tf.float32) * tf.cast(feature_w, tf.float32), tf.int32), []) , -1] ) feature_patched = tf.squeeze(patch_feature_conclusion, 0) patch_conclusion = { "image": feature_patched, "bboxes": bboxes_patched } #### when only_main_part_boxes, single_tensor is only flatten_image, the return final is 5 + flatten_image_dim i.e. 5 + 24 * 24 * 256 = 147461 single_tensor = single_patch_image(patch_conclusion) #### 5 + concat_tensor = tf.concat([tf.reshape(main_part_gt_boxes[main_index], [-1]) ,single_tensor], axis=0) return concat_tensor # ????? return tf.cond( tf.greater(tf.reduce_sum(tf.reshape(tf.cast(reproduce_iou, tf.float32), [-1])), 0.0), true_fn=lambda :tf.map_fn( single_map, intersection_indexes[:, 0], dtype=tf.float32 ), false_fn=lambda :tf.zeros([0, 147497], dtype=tf.float32) ) if not only_main_part_boxes else tf.map_fn(single_map, tf.cast(tf.range(tf.shape(main_part_gt_boxes)[0]), tf.int32), dtype=tf.float32) def inverse_transform_labels(self ,labels): ##### reverse to retrieve into require. labels = labels + tf.nn.relu(tf.sign(tf.sign(self._main_part_label - labels) * -1 + 1)) return labels #### input_feature is a 1d tensor, #### encode the label def decode_single_unstacked_feature(self, input_feature, only_main_part_boxes = False): main_part_ori_bbox = tf.slice(input_feature, begin = [0], size = [5]) # [ 1 + 24 * 24 * 3 + 3 * 5] # [ 1 + 24 * 24 * 1024 + 7 * 5] = [589860] if not only_main_part_boxes: num_of_bboxes = tf.cast(tf.squeeze(tf.slice(input_feature, begin = [5], size=[1])), dtype=tf.int32) # [24 * 24 *1024 + 7 * 5] res_feature = tf.slice(input_feature, begin=[5 + 1], size=[-1]) image_feature = tf.slice(res_feature, begin=[0], size = [24 * 24 * 256]) image = tf.reshape(image_feature, [24, 24, 256]) all_num_of_bboxes = 7 bboxes = tf.reshape(tf.slice(res_feature, begin = [24 * 24 * 256], size = [-1]), [all_num_of_bboxes, 5]) gt_boxes_filtered = bboxes[:num_of_bboxes, ...] #### encode the label transformed_labels = gt_boxes_filtered[...,-1:] - tf.nn.relu(tf.sign(gt_boxes_filtered[...,-1:] - self._main_part_label)) gt_boxes_filtered_req = tf.concat( [gt_boxes_filtered[...,:-1], transformed_labels], -1 ) return (main_part_ori_bbox ,image, gt_boxes_filtered_req) #return (main_part_ori_bbox ,image, gt_boxes_filtered) else: res_feature = tf.slice(input_feature, begin=[5], size=[-1]) image_feature = tf.slice(res_feature, begin=[0], size = [24 * 24 * 256]) image = tf.reshape(image_feature, [24, 24, 256]) return (main_part_ori_bbox, image) #### reduce and decode the label def reduce_prediction_dict_list(self, all_dict_list): def map_obj_label_prob_to_main_part(pred_dict, add_outer_bbox = False): main_info_dict = pred_dict["main_info"] image = main_info_dict["image"] main_part_ori_bbox = main_info_dict["main_part_ori_bbox"] objects = pred_dict['classification_prediction']['objects'] objects_labels = pred_dict['classification_prediction']['labels'] objects_labels_prob = pred_dict['classification_prediction']['probs'] x1, y1, x2, y2 ,_ = tf.split(main_part_ori_bbox, 5) objects = tf.concat([ objects[:, 0:1] + x1, objects[:, 1:2] + y1, objects[:, 2:3] + x1, objects[:, 3:4] + y1 ], axis=-1) if add_outer_bbox: objects = tf.concat([objects, tf.convert_to_tensor([tf.concat([x1, y1, x2, y2], axis=0)], dtype=objects.dtype)], axis=0) objects_labels = tf.concat([self.inverse_transform_labels(objects_labels), tf.convert_to_tensor([self._main_part_label], dtype=objects_labels.dtype)], axis=0) objects_labels_prob = tf.concat([objects_labels_prob, tf.convert_to_tensor([1.0], dtype=objects_labels_prob.dtype)], axis=0) return (objects, objects_labels, objects_labels_prob) return (objects, self.inverse_transform_labels(objects_labels), objects_labels_prob) def retrieve_main(pred_dict): return (pred_dict['classification_prediction']['objects'], pred_dict['classification_prediction']['labels'], pred_dict['classification_prediction']['probs']) def reduce_all_before_nms(): t3_list = [] for idx, pred_dict in enumerate(all_dict_list): if idx == 0: t3 = retrieve_main(pred_dict) #### filter main for tiny eval. #continue else: t3 = map_obj_label_prob_to_main_part(pred_dict) t3_list.append(t3) t3 = tuple(map(lambda idx: tf.concat(list(map(lambda t3: t3[idx], t3_list)), axis=0), range(3))) return t3 def build_without_filter(class_objects, cls_prob, cls_label): selected_boxes = [] selected_probs = [] selected_labels = [] # For each class, take the proposals with the class-specific # predictions (class scores and bbox regression) and filter accordingly # (valid area, min probability score and NMS). for class_id in range(self._num_classes): # Apply the class-specific transformations to the proposals to # obtain the current class' prediction. label_filer = tf.reshape(tf.where(tf.equal(class_id, cls_label)), [-1]) class_objects_filtered, cls_prob_filtered = map(lambda x: tf.gather(x, label_filer), [class_objects, cls_prob]) # Filter objects based on the min probability threshold and on them # having a valid area. #### for filter trivial padding conclusion prob_filter = tf.greater_equal( cls_prob_filtered, 0.2 ) (x_min, y_min, x_max, y_max) = tf.unstack(class_objects_filtered, axis=1) area_filter = tf.greater( tf.maximum(x_max - x_min, 0.0) * tf.maximum(y_max - y_min, 0.0), 0.0 ) object_filter = tf.logical_and(area_filter, prob_filter) class_objects_filtered = tf.boolean_mask(class_objects_filtered, object_filter) cls_prob_filtered = tf.boolean_mask(cls_prob_filtered, object_filter) # We have to use the TensorFlow's bounding box convention to use # the included function for NMS. class_objects_tf = change_order(class_objects_filtered) # Apply class NMS. class_selected_idx = tf.image.non_max_suppression( class_objects_tf, cls_prob_filtered, self._class_max_detections, iou_threshold=self._class_nms_threshold ) # Using NMS resulting indices, gather values from Tensors. class_objects_tf = tf.gather(class_objects_tf, class_selected_idx) class_prob = tf.gather(cls_prob_filtered, class_selected_idx) # Revert to our bbox convention. class_objects_tf = change_order(class_objects_tf) # We append values to a regular list which will later be # transformed to a proper Tensor. selected_boxes.append(class_objects_tf) selected_probs.append(class_prob) # In the case of the class_id, since it is a loop on classes, we # already have a fixed class_id. We use `tf.tile` to create that # Tensor with the total number of indices returned by the NMS. selected_labels.append( tf.tile([class_id], [tf.shape(class_selected_idx)[0]]) ) # We use concat (axis=0) to generate a Tensor where the rows are # stacked on top of each other objects = tf.concat(selected_boxes, axis=0) proposal_label = tf.concat(selected_labels, axis=0) proposal_label_prob = tf.concat(selected_probs, axis=0) # Get top-k detections of all classes. k = tf.minimum( self._total_max_detections, tf.shape(proposal_label_prob)[0] ) top_k = tf.nn.top_k(proposal_label_prob, k=k) top_k_proposal_label_prob = top_k.values top_k_objects = tf.gather(objects, top_k.indices) top_k_proposal_label = tf.gather(proposal_label, top_k.indices) return (top_k_objects, top_k_proposal_label, top_k_proposal_label_prob) def apply_nms_to_t3(t3 = reduce_all_before_nms()): obj, label, prob = t3 t3 = build_without_filter(class_objects=obj, cls_label=label, cls_prob=prob) return t3 return apply_nms_to_t3() def add_main_to_reduce(self, all_dict_list): main_pred_dict = all_dict_list[0] obj, label, prob = self.reduce_prediction_dict_list(all_dict_list) main_pred_dict['classification_prediction']['objects'] = obj main_pred_dict['classification_prediction']['labels'] = label main_pred_dict['classification_prediction']['probs'] = prob return main_pred_dict def _build(self, image, gt_boxes=None, is_training=False): """ Returns bounding boxes and classification probabilities. Args: image: A tensor with the image. Its shape should be `(height, width, 3)`. gt_boxes: A tensor with all the ground truth boxes of that image. Its shape should be `(num_gt_boxes, 5)` Where for each gt box we have (x1, y1, x2, y2, label), in that order. is_training: A boolean to whether or not it is used for training. Returns: classification_prob: A tensor with the softmax probability for each of the bounding boxes found in the image. Its shape should be: (num_bboxes, num_categories + 1) classification_bbox: A tensor with the bounding boxes found. It's shape should be: (num_bboxes, 4). For each of the bboxes we have (x1, y1, x2, y2) """ #### use variable_scope to split BodyDetector and PartDetector if gt_boxes is not None: gt_boxes = tf.cast(gt_boxes, tf.float32) # A Tensor with the feature map for the image, # its shape should be `(feature_height, feature_width, 512)`. # The shape depends of the pretrained network in use. # Set rank and last dimension before using base network # TODO: Why does it loose information when using queue? image.set_shape((None, None, 3)) conv_feature_map = self.base_network( tf.expand_dims(image, 0), is_training=is_training ) C4 = conv_feature_map with tf.variable_scope("C5"): C5 = self.iter_unify_layer(C4, is_training=is_training) #C5 = self.unify_layer(C4, is_training=is_training) with tf.variable_scope("Head_body_part"): Head_body_part = self.iter_unify_layer(C5, is_training=is_training) #Head_body_part = self.unify_layer(C5, is_training=is_training) with tf.variable_scope("Head_hf_part"): Head_hf_part = self.iter_unify_layer(C5, is_training=is_training) #Head_hf_part = self.unify_layer(C5, is_training=is_training) with tf.variable_scope("Head_hf_part_conv"): Head_hf_part_conv = self.iter_unify_layer( Head_hf_part, is_training=is_training ) # The RPN submodule which generates proposals of objects. self._rpn = RPN( self._num_anchors, self._config.model.rpn, debug=self._debug, seed=self._seed ) if self._with_rcnn: # The RCNN submodule which classifies RPN's proposals and # classifies them as background or a specific class. self._rcnn = RCNN( self._num_classes, self._config.model.rcnn, debug=self._debug, seed=self._seed, name="__rcnn__1" ) image_shape = tf.shape(image)[0:2] variable_summaries( conv_feature_map, 'conv_feature_map', 'reduced' ) # Generate anchors for the image based on the anchor reference. all_anchors_1 = self._generate_anchors(tf.shape(conv_feature_map)) rpn_1_prediction = self._rpn( conv_feature_map, image_shape, all_anchors_1, gt_boxes=gt_boxes, is_training=is_training ) prediction_1_dict = { 'rpn_prediction': rpn_1_prediction, } if self._debug: prediction_1_dict['image'] = image prediction_1_dict['image_shape'] = image_shape prediction_1_dict['all_anchors'] = all_anchors_1 prediction_1_dict['anchor_reference'] = tf.convert_to_tensor( self._anchor_reference ) if gt_boxes is not None: prediction_1_dict['gt_boxes'] = gt_boxes prediction_1_dict['conv_feature_map'] = conv_feature_map if self._with_rcnn: proposals = tf.stop_gradient(rpn_1_prediction['proposals']) rpn_1_proposals = proposals classification_pred = self._rcnn( Head_body_part, proposals, image_shape, self.base_network, gt_boxes=gt_boxes, is_training=is_training ) #### retrieve req from classification_pred without_filter_dict = classification_pred["without_filter_dict"] objects_1_all = without_filter_dict["objects"] labels_1_all = without_filter_dict["proposal_label"] probs_1_all = without_filter_dict["proposal_label_prob"] objects_1 = classification_pred["objects"] labels_1 = classification_pred["labels"] probs_1 = classification_pred["probs"] prediction_1_dict['objects'] = objects_1 prediction_1_dict['labels'] = labels_1 prediction_1_dict['probs'] = probs_1 top_indices = tf.nn.top_k(tf.cast(1 - tf.sign(tf.abs(labels_1_all - self._main_part_label)), dtype=tf.float32) + probs_1_all, k = tf.shape(labels_1_all)[0]).indices objects_1_sorted = tf.gather(objects_1_all ,top_indices) filter_num = tf.minimum(tf.shape(objects_1_sorted)[0], 7) objects_1_filtered = tf.slice(objects_1_sorted, begin=[0, 0], size=[filter_num, 4]) #### expand with label [?, 4] -> [?, 5] objects_1_filtered = tf.concat([objects_1_filtered, tf.fill([tf.shape(objects_1_filtered)[0], 1], value=tf.convert_to_tensor(self._main_part_label, dtype=tf.float32))], axis=-1) prediction_1_dict['classification_prediction'] = classification_pred if gt_boxes is not None: body_feature_ground_truth = self.generate_PartDetector_features( input_image=image, input_feature=Head_hf_part, gt_boxes = gt_boxes, only_main_part_boxes=False ) body_feature_pred = self.generate_PartDetector_features( input_image=image, input_feature=Head_hf_part, gt_boxes=tf.concat([tf.gather(gt_boxes, tf.reshape(tf.where(tf.not_equal(gt_boxes[:, -1], self._main_part_label)), [-1])), objects_1_filtered], axis=0) ,only_main_part_boxes=False) else: body_feature_ground_truth = None body_feature_pred = self.generate_PartDetector_features( input_image=image, input_feature=Head_hf_part, gt_boxes=objects_1_filtered, only_main_part_boxes=True ) #### use as fake placeholder if gt_boxes is not None: body_feature_pred = tf.reshape(body_feature_pred, [-1, tf.shape(body_feature_ground_truth)[-1]]) else: body_feature_pred = tf.reshape(body_feature_pred, [-1, 147461]) #### unstack it in firxt dim and "map reduce" it on modified faster-rcnn #### but the input ground truth label should perform label remapping is the "decoder" of single feature fixed_sliced_size ,PartDetector_feature_stacked = self.padding_and_slice_PartDetector_features(body_pred_feature=body_feature_pred, body_ground_truth_feature=body_feature_ground_truth) PartDetector_feature_stacked = tf.slice(PartDetector_feature_stacked, begin=[0, 0], size=[fixed_sliced_size, -1]) if gt_boxes is not None: PartDetector_feature_stacked = tf.gather(PartDetector_feature_stacked, tf.random_shuffle(tf.range(fixed_sliced_size))) PartDetector_feature_stacked = tf.reshape(PartDetector_feature_stacked, [fixed_sliced_size, -1]) PartDetector_feature_unstacked = [PartDetector_feature_stacked[0,...]] else: PartDetector_feature_unstacked = tf.unstack(PartDetector_feature_stacked, axis=0) partdetector_dict_list = [] for single_partdetector_feature in PartDetector_feature_unstacked: if gt_boxes is not None: main_part_ori_bbox ,cropped_feature, cropped_bboxes = self.decode_single_unstacked_feature(input_feature=single_partdetector_feature, only_main_part_boxes = True if gt_boxes is None else False) else: main_part_ori_bbox, cropped_feature = self.decode_single_unstacked_feature(input_feature=single_partdetector_feature, only_main_part_boxes = True if gt_boxes is None else False) cropped_bboxes = None x1, y1, x2, y2 ,_ = tf.split(main_part_ori_bbox, 5) x1, y1, x2, y2 = map(lambda x: tf.cast(tf.reshape(x, []), tf.int32), [x1, y1, x2, y2]) cropped_image = tf.image.crop_to_bounding_box(image=image, offset_height=y1, offset_width=x1, target_height=y2 - y1 + 1, target_width=x2 - x1 + 1) cropped_feature = tf.expand_dims(cropped_feature, 0) input_feature = Head_hf_part_conv image_h, image_w = tf.split(tf.shape(image)[0:2], num_or_size_splits=2) feature_h, feature_w = tf.split(tf.shape(input_feature)[1:3], num_or_size_splits=2) t4 = [x1, y1, x2, y2] Head_hf_part_conv = tf.slice(input_feature, begin=[0, tf.reshape(tf.cast(tf.cast(t4[1], tf.float32) / tf.cast(image_h, tf.float32) * tf.cast(feature_h, tf.float32), tf.int32), []), tf.reshape(tf.cast(tf.cast(t4[0], tf.float32) / tf.cast(image_w, tf.float32) * tf.cast(feature_w, tf.float32), tf.int32), []), 0], size=[-1, tf.reshape(tf.cast(tf.cast(t4[3] - t4[1], tf.float32)/ tf.cast(image_h, tf.float32) * tf.cast(feature_h, tf.float32), tf.int32), []) , tf.reshape(tf.cast(tf.cast(t4[2] - t4[0], tf.float32) / tf.cast(image_w, tf.float32) * tf.cast(feature_w, tf.float32), tf.int32), []) , 256] ) #### Head_hf_part_conv not crop, test the efficiency partdetector_dict = self.partdetetor(conv_feature_map = cropped_feature, Head_hf_part_conv = Head_hf_part_conv ,image = cropped_image, gt_boxes = cropped_bboxes, is_training = is_training) partdetector_dict["main_info"] = { "image": image, "main_part_ori_bbox": main_part_ori_bbox } partdetector_dict_list.append(partdetector_dict) return [prediction_1_dict] + partdetector_dict_list def partial_reduce_pred_list(self, all_dict_list): all_dict_list[0] = self.add_main_to_reduce(all_dict_list) return all_dict_list def loss(self, prediction_dict_list): body_prediction = prediction_dict_list[0] with tf.variable_scope("body_detector_loss"): body_detector_loss = self.single_loss(body_prediction, _rpn=self._rpn, _rcnn=self._rcnn) part_prediction_list = prediction_dict_list[1:] part_detector_loss_list = [] for index ,part_prediction in enumerate(part_prediction_list): with tf.variable_scope("part_detector_loss_{}".format(index)): part_detector_loss = self.single_loss(part_prediction, _rpn=self.partdetetor._rpn, _rcnn=self.partdetetor._rcnn) part_detector_loss_list.append(part_detector_loss) return body_detector_loss + reduce(lambda a, b: a + b, part_detector_loss_list) def single_loss(self, prediction_dict, _rpn, _rcnn, return_all=False): """Compute the joint training loss for Faster RCNN. Args: prediction_dict: The output dictionary of the _build method from which we use two different main keys: rpn_prediction: A dictionary with the output Tensors from the RPN. classification_prediction: A dictionary with the output Tensors from the RCNN. Returns: If `return_all` is False, a tensor for the total loss. If True, a dict with all the internal losses (RPN's, RCNN's, regularization and total loss). """ with tf.name_scope('losses'): self._rpn = _rpn self._rcnn = _rcnn rpn_loss_dict = self._rpn.loss( prediction_dict['rpn_prediction'] ) # Losses have a weight assigned, we multiply by them before saving # them. rpn_loss_dict['rpn_cls_loss'] = ( rpn_loss_dict['rpn_cls_loss'] * self._rpn_cls_loss_weight) rpn_loss_dict['rpn_reg_loss'] = ( rpn_loss_dict['rpn_reg_loss'] * self._rpn_reg_loss_weight) prediction_dict['rpn_loss_dict'] = rpn_loss_dict if self._with_rcnn: rcnn_loss_dict = self._rcnn.loss( prediction_dict['classification_prediction'] ) rcnn_loss_dict['rcnn_cls_loss'] = ( rcnn_loss_dict['rcnn_cls_loss'] * self._rcnn_cls_loss_weight ) rcnn_loss_dict['rcnn_reg_loss'] = ( rcnn_loss_dict['rcnn_reg_loss'] * self._rcnn_reg_loss_weight ) prediction_dict['rcnn_loss_dict'] = rcnn_loss_dict else: rcnn_loss_dict = {} all_losses_items = ( list(rpn_loss_dict.items()) + list(rcnn_loss_dict.items())) for loss_name, loss_tensor in all_losses_items: tf.summary.scalar( loss_name, loss_tensor, collections=self._losses_collections ) # We add losses to the losses collection instead of manually # summing them just in case somebody wants to use it in another # place. tf.losses.add_loss(loss_tensor) # Regularization loss is automatically saved by TensorFlow, we log # it differently so we can visualize it independently. regularization_loss = tf.losses.get_regularization_loss() # Total loss without regularization no_reg_loss = tf.losses.get_total_loss( add_regularization_losses=False ) total_loss = tf.losses.get_total_loss() tf.summary.scalar( 'total_loss', total_loss, collections=self._losses_collections ) tf.summary.scalar( 'no_reg_loss', no_reg_loss, collections=self._losses_collections ) tf.summary.scalar( 'regularization_loss', regularization_loss, collections=self._losses_collections ) if return_all: loss_dict = { 'total_loss': total_loss, 'no_reg_loss': no_reg_loss, 'regularization_loss': regularization_loss, } for loss_name, loss_tensor in all_losses_items: loss_dict[loss_name] = loss_tensor return loss_dict # We return the total loss, which includes: # - rpn loss # - rcnn loss (if activated) # - regularization loss return total_loss def _generate_anchors(self, feature_map_shape): """Generate anchor for an image. Using the feature map, the output of the pretrained network for an image, and the anchor_reference generated using the anchor config values. We generate a list of anchors. Anchors are just fixed bounding boxes of different ratios and sizes that are uniformly generated throught the image. Args: feature_map_shape: Shape of the convolutional feature map used as input for the RPN. Should be (batch, height, width, depth). Returns: all_anchors: A flattened Tensor with all the anchors of shape `(num_anchors_per_points * feature_width * feature_height, 4)` using the (x1, y1, x2, y2) convention. """ with tf.variable_scope('generate_anchors'): grid_width = feature_map_shape[2] # width grid_height = feature_map_shape[1] # height shift_x = tf.range(grid_width) * self._anchor_stride shift_y = tf.range(grid_height) * self._anchor_stride shift_x, shift_y = tf.meshgrid(shift_x, shift_y) shift_x = tf.reshape(shift_x, [-1]) shift_y = tf.reshape(shift_y, [-1]) shifts = tf.stack( [shift_x, shift_y, shift_x, shift_y], axis=0 ) shifts = tf.transpose(shifts) # Shifts now is a (H x W, 4) Tensor # Expand dims to use broadcasting sum. all_anchors = ( np.expand_dims(self._anchor_reference, axis=0) + tf.expand_dims(shifts, axis=1) ) # Flatten all_anchors = tf.reshape( all_anchors, (-1, 4) ) return all_anchors @property def summary(self): """ Generate merged summary of all the sub-summaries used inside the Faster R-CNN network. """ summaries = [ tf.summary.merge_all(key='rpn'), ] summaries.append( tf.summary.merge_all(key=self._losses_collections[0]) ) if self._with_rcnn: summaries.append(tf.summary.merge_all(key='rcnn')) return tf.summary.merge(summaries) @property def vars_summary(self): return { key: tf.summary.merge_all(key=collection) for key, collections in VAR_LOG_LEVELS.items() for collection in collections } def get_trainable_vars(self): """Get trainable vars included in the module. """ trainable_vars = snt.get_variables_in_module(self) if self._config.model.base_network.trainable: pretrained_trainable_vars = self.base_network.get_trainable_vars() if len(pretrained_trainable_vars): tf.logging.info( 'Training {} vars from pretrained module; ' 'from "{}" to "{}".'.format( len(pretrained_trainable_vars), pretrained_trainable_vars[0].name, pretrained_trainable_vars[-1].name, ) ) else: tf.logging.info('No vars from pretrained module to train.') trainable_vars += pretrained_trainable_vars else: tf.logging.info('Not training variables from pretrained module') return trainable_vars def get_base_network_checkpoint_vars(self): return self.base_network.get_base_network_checkpoint_vars() def get_checkpoint_file(self): return self.base_network.get_checkpoint_file()
def _build(self, image, gt_boxes=None, is_training=True): """ Returns bounding boxes and classification probabilities. Args: image: A tensor with the image. Its shape should be `(1, height, width, 3)`. gt_boxes: A tensor with all the ground truth boxes of that image. Its shape should be `(num_gt_boxes, 5)` Where for each gt box we have (x1, y1, x2, y2, label), in that order. is_training: A boolean to whether or not it is used for training. Returns: classification_prob: A tensor with the softmax probability for each of the bounding boxes found in the image. Its shape should be: (num_bboxes, num_categories + 1) classification_bbox: A tensor with the bounding boxes found. It's shape should be: (num_bboxes, 4). For each of the bboxes we have (x1, y1, x2, y2) """ if gt_boxes is not None: gt_boxes = tf.cast(gt_boxes, tf.float32) # A Tensor with the feature map for the image, # its shape should be `(feature_height, feature_width, 512)`. # The shape depends of the pretrained network in use. conv_feature_map = self.base_network(image, is_training=is_training) # The RPN submodule which generates proposals of objects. self._rpn = RPN(self._num_anchors, self._config.rpn, debug=self._debug, seed=self._seed) if self._with_rcnn: # The RCNN submodule which classifies RPN's proposals and # classifies them as background or a specific class. self._rcnn = RCNN(self._num_classes, self._config.rcnn, debug=self._debug, seed=self._seed) image_shape = tf.shape(image)[1:3] variable_summaries(conv_feature_map, 'conv_feature_map', ['rpn']) # Generate anchors for the image based on the anchor reference. all_anchors = self._generate_anchors(tf.shape(conv_feature_map)) rpn_prediction = self._rpn(conv_feature_map, image_shape, all_anchors, gt_boxes=gt_boxes) prediction_dict = { 'rpn_prediction': rpn_prediction, } if self._debug: prediction_dict['image'] = image prediction_dict['image_shape'] = image_shape prediction_dict['all_anchors'] = all_anchors prediction_dict['anchor_reference'] = tf.convert_to_tensor( self._anchor_reference) prediction_dict['gt_boxes'] = gt_boxes prediction_dict['conv_feature_map'] = conv_feature_map if self._with_rcnn: classification_pred = self._rcnn(conv_feature_map, rpn_prediction['proposals'], image_shape, gt_boxes=gt_boxes, is_training=is_training) prediction_dict['classification_prediction'] = classification_pred return prediction_dict
class FasterRCNN(snt.AbstractModule): def __init__(self, config, name='fasterrcnn'): super(FasterRCNN, self).__init__(name=name) self._config = config self._num_classes = config.model.network.num_classes # Generate network with RCNN self._with_rcnn = config.model.network.with_rcnn self._debug = config.train.debug self._seed = config.train.seed self._anchor_base_size = config.model.anchors.base_size self._anchor_scales = np.array(config.model.anchors.scales) self._anchor_ratios = np.array(config.model.anchors.ratios) self._anchor_stride = config.model.anchors.stride self._anchor_reference = generate_anchors_reference( self._anchor_base_size, self._anchor_ratios, self._anchor_scales ) self._num_anchors = self._anchor_reference.shape[0] # Weights used to sum each of the losses of the submodules self._rpn_cls_loss_weight = config.model.loss.rpn_cls_loss_weight self._rpn_reg_loss_weight = config.model.loss.rpn_reg_loss_weights self._rcnn_cls_loss_weight = config.model.loss.rcnn_cls_loss_weight self._rcnn_reg_loss_weight = config.model.loss.rcnn_reg_loss_weights self._losses_collections = ['fastercnn_losses'] self.base_network = TruncatedBaseNetwork(config.model.base_network) def _build(self, image, gt_boxes=None, is_training=False): if gt_boxes is not None: gt_boxes = tf.cast(gt_boxes, tf.float32) image.set_shape((None, None, 3)) conv_feature_map = self.base_network( tf.expand_dims(image, 0), is_training=is_training ) # The RPN submodule which generates proposals of objects. self._rpn = RPN( self._num_anchors, self._config.model.rpn, debug=self._debug, seed=self._seed ) if self._with_rcnn: self._rcnn = RCNN( self._num_classes, self._config.model.rcnn, debug=self._debug, seed=self._seed ) image_shape = tf.shape(image)[0:2] variable_summaries( conv_feature_map, 'conv_feature_map', 'reduced' ) all_anchors = self._generate_anchors(tf.shape(conv_feature_map)) rpn_prediction = self._rpn( conv_feature_map, image_shape, all_anchors, gt_boxes=gt_boxes, is_training=is_training ) prediction_dict = { 'rpn_prediction': rpn_prediction, } if self._debug: prediction_dict['image'] = image prediction_dict['image_shape'] = image_shape prediction_dict['all_anchors'] = all_anchors prediction_dict['anchor_reference'] = tf.convert_to_tensor( self._anchor_reference ) if gt_boxes is not None: prediction_dict['gt_boxes'] = gt_boxes prediction_dict['conv_feature_map'] = conv_feature_map if self._with_rcnn: proposals = tf.stop_gradient(rpn_prediction['proposals']) classification_pred = self._rcnn( conv_feature_map, proposals, image_shape, self.base_network, gt_boxes=gt_boxes, is_training=is_training ) prediction_dict['classification_prediction'] = classification_pred return prediction_dict def loss(self, prediction_dict, return_all=False): with tf.name_scope('losses'): rpn_loss_dict = self._rpn.loss( prediction_dict['rpn_prediction'] ) rpn_loss_dict['rpn_cls_loss'] = ( rpn_loss_dict['rpn_cls_loss'] * self._rpn_cls_loss_weight) rpn_loss_dict['rpn_reg_loss'] = ( rpn_loss_dict['rpn_reg_loss'] * self._rpn_reg_loss_weight) prediction_dict['rpn_loss_dict'] = rpn_loss_dict if self._with_rcnn: rcnn_loss_dict = self._rcnn.loss( prediction_dict['classification_prediction'] ) rcnn_loss_dict['rcnn_cls_loss'] = ( rcnn_loss_dict['rcnn_cls_loss'] * self._rcnn_cls_loss_weight ) rcnn_loss_dict['rcnn_reg_loss'] = ( rcnn_loss_dict['rcnn_reg_loss'] * self._rcnn_reg_loss_weight ) prediction_dict['rcnn_loss_dict'] = rcnn_loss_dict else: rcnn_loss_dict = {} all_losses_items = ( list(rpn_loss_dict.items()) + list(rcnn_loss_dict.items())) for loss_name, loss_tensor in all_losses_items: tf.summary.scalar( loss_name, loss_tensor, collections=self._losses_collections ) tf.losses.add_loss(loss_tensor) regularization_loss = tf.losses.get_regularization_loss() no_reg_loss = tf.losses.get_total_loss( add_regularization_losses=False ) total_loss = tf.losses.get_total_loss() tf.summary.scalar( 'total_loss', total_loss, collections=self._losses_collections ) tf.summary.scalar( 'no_reg_loss', no_reg_loss, collections=self._losses_collections ) tf.summary.scalar( 'regularization_loss', regularization_loss, collections=self._losses_collections ) if return_all: loss_dict = { 'total_loss': total_loss, 'no_reg_loss': no_reg_loss, 'regularization_loss': regularization_loss, } for loss_name, loss_tensor in all_losses_items: loss_dict[loss_name] = loss_tensor return loss_dict return total_loss def _generate_anchors(self, feature_map_shape): with tf.variable_scope('generate_anchors'): grid_width = feature_map_shape[2] # width grid_height = feature_map_shape[1] # height shift_x = tf.range(grid_width) * self._anchor_stride shift_y = tf.range(grid_height) * self._anchor_stride shift_x, shift_y = tf.meshgrid(shift_x, shift_y) shift_x = tf.reshape(shift_x, [-1]) shift_y = tf.reshape(shift_y, [-1]) shifts = tf.stack( [shift_x, shift_y, shift_x, shift_y], axis=0 ) shifts = tf.transpose(shifts) all_anchors = ( np.expand_dims(self._anchor_reference, axis=0) + tf.expand_dims(shifts, axis=1) ) all_anchors = tf.reshape( all_anchors, (-1, 4) ) return all_anchors @property def summary(self): summaries = [ tf.summary.merge_all(key='rpn'), ] summaries.append( tf.summary.merge_all(key=self._losses_collections[0]) ) if self._with_rcnn: summaries.append(tf.summary.merge_all(key='rcnn')) return tf.summary.merge(summaries) @property def vars_summary(self): return { key: tf.summary.merge_all(key=collection) for key, collections in VAR_LOG_LEVELS.items() for collection in collections } def get_trainable_vars(self): trainable_vars = snt.get_variables_in_module(self) if self._config.model.base_network.trainable: pretrained_trainable_vars = self.base_network.get_trainable_vars() if len(pretrained_trainable_vars): tf.logging.info( 'Training {} vars from pretrained module; ' 'from "{}" to "{}".'.format( len(pretrained_trainable_vars), pretrained_trainable_vars[0].name, pretrained_trainable_vars[-1].name, ) ) else: tf.logging.info('No vars from pretrained module to train.') trainable_vars += pretrained_trainable_vars else: tf.logging.info('Not training variables from pretrained module') return trainable_vars def get_base_network_checkpoint_vars(self): return self.base_network.get_base_network_checkpoint_vars() def get_checkpoint_file(self): return self.base_network.get_checkpoint_file()
def valid_conclusion(gt_boxes): if gt_boxes is not None: gt_boxes = tf.cast(gt_boxes, tf.float32) # A Tensor with the feature map for the image, # its shape should be `(feature_height, feature_width, 512)`. # The shape depends of the pretrained network in use. # Set rank and last dimension before using base network # TODO: Why does it loose information when using queue? image.set_shape((None, None, 3)) # The RPN submodule which generates proposals of objects. self._rpn = RPN( self._num_anchors, self._config.model.rpn, debug=self._debug, seed=self._seed ) if self._with_rcnn: # The RCNN submodule which classifies RPN's proposals and # classifies them as background or a specific class. self._rcnn = RCNN( self._num_classes, self._config.model.rcnn, debug=self._debug, seed=self._seed ) image_shape = tf.shape(image)[0:2] variable_summaries( conv_feature_map, 'conv_feature_map', 'reduced' ) # Generate anchors for the image based on the anchor reference. all_anchors = self._generate_anchors(tf.shape(conv_feature_map)) rpn_prediction = self._rpn( conv_feature_map, image_shape, all_anchors, gt_boxes=gt_boxes, is_training=is_training ) prediction_dict["debug"] = (image, gt_boxes) prediction_dict["rpn_prediction"] = rpn_prediction if self._debug: prediction_dict['image'] = image prediction_dict['image_shape'] = image_shape prediction_dict['all_anchors'] = all_anchors prediction_dict['anchor_reference'] = tf.convert_to_tensor( self._anchor_reference ) if gt_boxes is not None: prediction_dict['gt_boxes'] = gt_boxes prediction_dict['conv_feature_map'] = conv_feature_map if self._with_rcnn: proposals = tf.stop_gradient(rpn_prediction['proposals']) classification_pred = self._rcnn( Head_hf_part_conv, proposals, image_shape, self.base_network, gt_boxes=gt_boxes, is_training=is_training ) prediction_dict['classification_prediction'] = classification_pred return prediction_dict