コード例 #1
0
    def __init__(self,
                 base_script,
                 wavelengths,
                 fom,
                 geometry,
                 optimizer,
                 hide_fdtd_cad=False,
                 use_deps=True):
        self.base_script = base_script if isinstance(
            base_script, BaseScript) else BaseScript(base_script)
        self.wavelengths = wavelengths if isinstance(
            wavelengths, Wavelengths) else Wavelengths(wavelengths)
        self.wavelengths = wavelengths if isinstance(
            wavelengths, Wavelengths) else Wavelengths(wavelengths)
        self.fom = fom
        self.geometry = geometry
        self.optimizer = optimizer
        self.hide_fdtd_cad = bool(hide_fdtd_cad)
        self.use_deps = bool(use_deps)
        if self.use_deps:
            print("Accurate interface detection enabled")

        self.plotter = Plotter()
        self.forward_fields = None
        self.adjoint_fields = None
        self.gradients = None
        self.fomHist = []
        self.paramsHist = []
        self.gradient_fields = None

        frame = inspect.stack()[1]
        calling_file_name = os.path.abspath(frame[0].f_code.co_filename)
        Optimization.goto_new_opts_folder(calling_file_name, base_script)
        self.workingDir = os.getcwd()
    def setUp(self):
        # Base simulation project files
        self.base_TE_sim = os.path.join(
            self.file_dir,
            'co_optimization_parallel_plate_waveguide_TE_base.fsp')
        self.base_TM_sim = os.path.join(
            self.file_dir,
            'co_optimization_parallel_plate_waveguide_TM_base.fsp')
        # Simulation bandwidth
        self.wavelengths = Wavelengths(start=1500e-9, stop=1600e-9, points=12)
        # Polygon defining a rectangle that can grow or shrink along the y-axis to fill the gap
        self.mesh_del = 10.0e-9
        # must be kept in sych with self.base_script
        initial_points_y = np.array(
            [1.75 * self.mesh_del, 0.01 * self.mesh_del])

        def wall(param=initial_points_y):
            assert param.size == 2, "walls defined by two points."
            self.wg_gap = 10.0 * self.mesh_del  # must be kept in sych
            points_x = 0.5 * np.array(
                [-self.wg_gap, self.wg_gap, self.wg_gap, -self.wg_gap])
            points_y = np.array([-param[0], -param[1], param[1], param[0]])
            polygon_points = [(x, y) for x, y in zip(points_x, points_y)]
            return np.array(polygon_points)

        self.wg_width = 50.0 * self.mesh_del  # must be kept in synch
        bounds = [(0.0, self.wg_width / 2.0)] * initial_points_y.size
        self.geometry = FunctionDefinedPolygon(
            func=wall,
            initial_params=initial_points_y,
            bounds=bounds,
            z=0.0,  # must be kept in sych
            depth=self.wg_width,
            eps_out=Material(base_epsilon=1.0**2,
                             name='<Object defined dielectric>',
                             mesh_order=2),  # must be kept in synch
            eps_in=Material(base_epsilon=4.0**2,
                            name='<Object defined dielectric>',
                            mesh_order=1),  # must be kept in sych
            edge_precision=50,
            dx=1.0e-10)
        # Figure of merit
        self.fom = ModeMatch(
            monitor_name='fom',  # must be kept in sych
            mode_number=1,  # must be kept in sych
            direction='Forward',
            multi_freq_src=True,
            target_T_fwd=lambda wl: np.ones(wl.size),
            norm_p=1)
        # Scipy optimizer
        self.optimizer = ScipyOptimizers(max_iter=5,
                                         method='L-BFGS-B',
                                         scaling_factor=1.0e7,
                                         pgtol=1.0e-5,
                                         ftol=1.0e-12,
                                         target_fom=0.0,
                                         scale_initial_gradient_to=None)
コード例 #3
0
def runSim(params,
           eps_bg,
           eps_wg,
           x_pos,
           y_pos,
           size_x,
           filter_R,
           beta_start=1):

    ######## DEFINE A 2D TOPOLOGY OPTIMIZATION REGION ########
    geometry = TopologyOptimization2D(params=params,
                                      eps_min=eps_bg,
                                      eps_max=eps_wg,
                                      x=x_pos,
                                      y=y_pos,
                                      z=0,
                                      filter_R=filter_R,
                                      beta=beta_start)

    ######## DEFINE FIGURE OF MERIT ########
    # The base simulation script defines a field monitor named 'fom' at the point where we want to modematch to the fundamental TE mode
    fom = ModeMatch(monitor_name='fom',
                    mode_number='Fundamental TE mode',
                    direction='Forward',
                    norm_p=2)

    ######## DEFINE OPTIMIZATION ALGORITHM ########
    optimizer = ScipyOptimizers(max_iter=50,
                                method='L-BFGS-B',
                                scaling_factor=1,
                                pgtol=1e-6,
                                ftol=1e-4,
                                target_fom=0.5,
                                scale_initial_gradient_to=0.25)

    ######## LOAD TEMPLATE SCRIPT AND SUBSTITUTE PARAMETERS ########
    script = load_from_lsf(
        os.path.join(CONFIG['root'],
                     'examples/Ysplitter/splitter_base_2D_TE_topology.lsf'))
    script = script.replace('opt_size_x=3.5e-6',
                            'opt_size_x={:1.6g}'.format(size_x))

    wavelengths = Wavelengths(start=1450e-9, stop=1650e-9, points=11)
    opt = Optimization(base_script=script,
                       wavelengths=wavelengths,
                       fom=fom,
                       geometry=geometry,
                       optimizer=optimizer,
                       use_deps=False,
                       hide_fdtd_cad=True,
                       plot_history=False,
                       store_all_simulations=False)

    ######## RUN THE OPTIMIZER ########
    opt.run()
コード例 #4
0
 def setUp(self):
     # base script
     self.base_script = load_from_lsf(os.path.join(self.file_dir, 'modematch_parallel_plate_waveguide_TM_base.lsf'))
     # bandwidth        
     self.wavelengths = Wavelengths(start = 1540e-9, stop = 1560e-9, points = 3)
     # simulation
     self.sim = Simulation(workingDir = self.file_dir, hide_fdtd_cad = True)
     self.sim.fdtd.eval(self.base_script)
     Optimization.set_global_wavelength(self.sim, self.wavelengths)
     # reference
     self.ref_fom = 0.6643986
コード例 #5
0
    def __init__(self,
                 base_script,
                 wavelengths,
                 fom,
                 geometry,
                 optimizer,
                 use_var_fdtd=False,
                 hide_fdtd_cad=False,
                 use_deps=True,
                 plot_history=True,
                 store_all_simulations=True,
                 save_global_index=False,
                 label=None,
                 source_name='source',
                 fields_on_cad_only=False):
        super().__init__(plot_history=plot_history,
                         fields_on_cad_only=fields_on_cad_only)
        self.base_script = base_script if isinstance(
            base_script, BaseScript) else BaseScript(base_script)
        self.wavelengths = wavelengths if isinstance(
            wavelengths, Wavelengths) else Wavelengths(wavelengths)
        self.fom = fom
        self.geometry = geometry
        self.optimizer = optimizer
        self.use_var_fdtd = bool(use_var_fdtd)
        self.hide_fdtd_cad = bool(hide_fdtd_cad)
        self.source_name = source_name

        if callable(use_deps):
            self.use_deps = True
            self.custom_deps = use_deps
        else:
            self.use_deps = bool(use_deps)
            self.custom_deps = None

        self.store_all_simulations = store_all_simulations
        self.save_global_index = save_global_index
        self.unfold_symmetry = geometry.unfold_symmetry
        self.label = label
        self.plot_fom_on_log_scale = (float(fom.target_fom) != 0.0)

        if self.use_deps:
            print("Accurate interface detection enabled")

        ## Figure out from which file this method was called (most likely the driver script)
        frame = inspect.stack()[1]
        self.calling_file_name = os.path.abspath(frame[0].f_code.co_filename)
        self.base_file_path = os.path.dirname(self.calling_file_name)
コード例 #6
0
 def setUp(self):
     # Base simulation script
     self.base_script = load_from_lsf(os.path.join(self.file_dir, 'optimization_waveguide_filter_TM_2D_base.lsf'))
     # Simulation bandwidth
     self.wavelengths = Wavelengths(start = 1300e-9,
                                    stop = 1800e-9,
                                    points = 41)
     # Polygons to form the two gaps
     self.mesh_del = 20.0e-9; # must be kept in sych with self.base_script
     initial_param = 10.0 * np.array([self.mesh_del])
     def rectangle(param = initial_param, offset = 0.0):
         assert param.size == 1, "rectangle grows along a single dimension."
         wg_width = 35.0 * self.mesh_del # must be kept in synch
         points_x = 0.5 * np.array([-wg_width,  wg_width, wg_width, -wg_width])
         points_y = 0.5 * np.array([-param, -param, param,  param]) + offset
         polygon_points = [(x, y) for x, y in zip(points_x, points_y)]
         return np.array(polygon_points)
     bounds = [(self.mesh_del, 20.0 * self.mesh_del)]
     z = 0.0 # must be kept in sych
     depth = 200.0 * self.mesh_del # must be kept in sych
     eps_in = Material(base_epsilon = 1.44 ** 2, mesh_order = 1) # must be kept in sych with
     eps_out = Material(base_epsilon = 2.8 ** 2, mesh_order = 1) # must be kept in sych with
     edge_precision = 25
     dx = 1.0e-10
     self.geometry = (FunctionDefinedPolygon(func = lambda param: rectangle(param[0], 2.0 * param[0]), initial_params = initial_param, bounds = bounds, z = z, depth = depth, eps_out = eps_out, eps_in = eps_in, edge_precision = edge_precision, dx = dx) *
                      FunctionDefinedPolygon(func = lambda param: rectangle(param[0],-2.0 * param[0]), initial_params = initial_param, bounds = bounds, z = z, depth = depth, eps_out = eps_out, eps_in = eps_in, edge_precision = edge_precision, dx = dx))
     # Broadband figure of merit
     target_T_fwd = lambda wl: 0.3 + 0.65*np.power(np.sin(np.pi * (wl - wl.min()) / (wl.max() - wl.min())), 6)
     self.fom = ModeMatch(monitor_name = 'FOM', # must be kept in sych
                          mode_number = 1, # must be kept in sych
                          direction = 'Backward',
                          multi_freq_src = True,
                          target_T_fwd = target_T_fwd,
                          norm_p = 1)
     # Scipy optimzier
     self.optimizer = ScipyOptimizers(max_iter = 10, 
                                      method = 'L-BFGS-B',
                                      scaling_factor = 1.0e7,
                                      pgtol = 5.6e-3)
コード例 #7
0
    def __init__(self, max_iter, method, scaling_factor, pgtol, ftol,
                 wavelength_start, wavelength_stop, wavelength_points,
                 build_simulation, fom, geometry, hide_fdtd_cad):

        # The optimizer must be generated anew at each iteration
        self._new_local_optimizer = ScipyOptimizers(
            max_iter=max_iter,
            method=method,
            scaling_factor=scaling_factor,
            ftol=ftol,
            pgtol=pgtol)

        self._wl = Wavelengths(start=wavelength_start,
                               stop=wavelength_stop,
                               points=wavelength_points)

        self._optimization = Optimization(base_script=build_simulation,
                                          wavelengths=self._wl,
                                          fom=fom,
                                          geometry=geometry,
                                          optimizer=self._new_local_optimizer,
                                          hide_fdtd_cad=hide_fdtd_cad,
                                          use_deps=True)
コード例 #8
0
ファイル: optimization.py プロジェクト: sbuchbinder/lumopt
    def __init__(self,
                 base_script,
                 wavelengths,
                 fom,
                 geometry,
                 optimizer,
                 use_var_fdtd=False,
                 hide_fdtd_cad=False,
                 use_deps=True,
                 plot_history=True,
                 store_all_simulations=True):
        self.base_script = base_script if isinstance(
            base_script, BaseScript) else BaseScript(base_script)
        self.wavelengths = wavelengths if isinstance(
            wavelengths, Wavelengths) else Wavelengths(wavelengths)
        self.fom = fom
        self.geometry = geometry
        self.optimizer = optimizer
        self.use_var_fdtd = bool(use_var_fdtd)
        self.hide_fdtd_cad = bool(hide_fdtd_cad)
        self.use_deps = bool(use_deps)
        self.plot_history = bool(plot_history)
        self.store_all_simulations = store_all_simulations
        self.unfold_symmetry = geometry.unfold_symmetry

        if self.use_deps:
            print("Accurate interface detection enabled")

        self.plotter = None  #< Initialize later, when we know how many parameters there are
        self.fomHist = []
        self.paramsHist = []

        frame = inspect.stack()[1]
        calling_file_name = os.path.abspath(frame[0].f_code.co_filename)
        Optimization.goto_new_opts_folder(calling_file_name, base_script)
        self.workingDir = os.getcwd()
コード例 #9
0
# General purpose imports
import os
import numpy as np

# Optimization specific imports
from lumopt.utilities.wavelengths import Wavelengths
from lumopt.geometries.polygon import FunctionDefinedPolygon
from lumopt.figures_of_merit.modematch import ModeMatch
from lumopt.optimizers.generic_optimizers import ScipyOptimizers
from lumopt.optimization import Optimization

######## DEFINE BASE SIMULATION ########
base_sim = os.path.join(os.path.dirname(__file__), 'grating_base.fsp')

######## DEFINE SPECTRAL RANGE #########
wavelengths = Wavelengths(start=1530e-9, stop=1570e-9, points=21)

######## DEFINE OPTIMIZABLE GEOMETRY ########
n_grates = 20
wg_height = 220.0e-9
wg_length = 30.0e-6
etch_depth_frac = 0.8
x0 = -6.0e-6
y0 = 0.0


def grate_function(params):
    y2 = y0 + wg_height
    y1 = y2 - etch_depth_frac * wg_height
    x_begin = x0 - wg_length
    verts = np.array([[x_begin, y0], [x_begin, y2], [x0, y2], [x0, y1]])
コード例 #10
0
def runGratingOptimization(bandwidth_in_nm, etch_depth_shallow, etch_depth_deep, n_grates, initial_params = None):
    ### Yet another parametrization which allows to enforce minimum feature size when the optimizer only supports box constraints  
    ### params = [x0, a1, b1, ..., aN]
    if initial_params is None:
        params = np.zeros(4*n_grates)

        for i in range(n_grates):
            params[i*4]   = 0.2     #< Width up
            params[i*4+1] = 0.4*(i/n_grates)     #< Width of the shallow etch
            params[i*4+2] = 0.1    #< Width up
            params[i*4+3] = 0.4*(i/n_grates)     #< Width of the deep etch

        params[0] = 0      #< Overwrite the first since it has a special meaning: Start of the grating at 0um
    else:
        params = initial_params

    bounds = [(0, 1)]*(4*n_grates)  
    bounds[0] = (-3,3)

    def grating_params_pos(params, output_waveguide_length = 0.5e-6, height = 220e-9, y0 = 0):
        x_begin = -3e-6

        y3 = y0+height
        y2 = y3-etch_depth_deep
        y1 = y3-etch_depth_shallow

        x0 = params[0]*1e-6     #< First parameter is the starting position
        verts = np.array( [ [x_begin,y0],[x_begin,y3],[x0,y3],[x0,y1] ] )
        
        ## Iterate over all but the last
        for i in range(n_grates-1):
            x1 = x0 + params[i*4+1]*1e-6    #< Width of the deep etch
            x2 = x1 + params[i*4+2]*1e-6    #< Width up
            x3 = x2 + params[i*4+3]*1e-6    #< Width of the shallow etch
            x4 = x3 + params[i*4+4]*1e-6    #< Width up
            verts = np.concatenate((verts,[[x1,y1],[x1,y3],[x2,y3],[x2,y2],[x3,y2],[x3,y3],[x4,y3],[x4,y1]]),axis=0)
            x0 = x4

        x1 = x0 + params[(n_grates-1)*4+1]*1e-6    #< Width of the deep etch
        x2 = x1 + params[(n_grates-1)*4+2]*1e-6    #< Width up
        x3 = x2 + params[(n_grates-1)*4+3]*1e-6    #< Width of the shallow etch
        x_end   = x3+output_waveguide_length
        verts = np.concatenate((verts,[[x1,y1],[x1,y3],[x2,y3],[x2,y2],[x3,y2],[x3,y3],[x_end,y3],[x_end,y0]]),axis=0) 

        return verts

    geometry = FunctionDefinedPolygon(func = grating_params_pos, initial_params = params, bounds = bounds, z = 0.0, depth = 220e-9, eps_out = 1.44 ** 2, eps_in = 3.47668 ** 2, edge_precision = 5, dx = 1e-3)

    ######## DEFINE FIGURE OF MERIT ########
    fom = ModeMatch(monitor_name = 'fom', mode_number = 1, direction = 'Backward', target_T_fwd = lambda wl: np.ones(wl.size), norm_p = 1)

    ######## DEFINE OPTIMIZATION ALGORITHM ########
    optimizer = ScipyOptimizers(max_iter = 250, method = 'L-BFGS-B', scaling_factor = 1, pgtol = 1e-6) #SLSQP

    ######## DEFINE BASE SIMULATION ########
    base_script = load_from_lsf(os.path.join(os.path.dirname(__file__), 'grating_coupler_2D_2etch.lsf'))

    ######## PUT EVERYTHING TOGETHER ########
    lambda_start = 1550 - bandwidth_in_nm/2
    lambda_end   = 1550 + bandwidth_in_nm/2
    lambda_pts   = int(bandwidth_in_nm/10)+1
    wavelengths = Wavelengths(start = lambda_start*1e-9, stop = lambda_end*1e-9, points = lambda_pts)
    opt = Optimization(base_script = base_script, wavelengths = wavelengths, fom = fom, geometry = geometry, optimizer = optimizer, hide_fdtd_cad = True, use_deps = True)

    ######## RUN THE OPTIMIZER ########
    opt.run()
コード例 #11
0
import numpy as np
import scipy as sp
from lumopt import CONFIG

# Optimization specific imports
from lumopt.utilities.wavelengths import Wavelengths
from lumopt.geometries.polygon import FunctionDefinedPolygon
from lumopt.figures_of_merit.modematch import ModeMatch
from lumopt.optimizers.generic_optimizers import ScipyOptimizers
from lumopt.optimization import Optimization

######## DEFINE BASE SIMULATION ########
base_script = os.path.join(os.path.dirname(__file__), 'splitter_with_arms.lsf')

######## DEFINE SPECTRAL RANGE #########
wavelengths = Wavelengths(start=1550e-9, stop=1550e-9, points=1)

######## DEFINE OPTIMIZABLE GEOMETRY ########
# The class FunctionDefinedPolygon needs a parameterized Polygon (with points ordered
# in a counter-clockwise direction). Here the geometry is defined by 10 parameters defining
# the knots of a spline, and the resulting Polygon has 200 edges, making it quite smooth.


def taper_splitter(params=np.linspace(0.25e-6, 2e-6, 20)):
    ''' Defines a taper where the paramaters are the y coordinates of the nodes of a cubic spline. '''
    points_x = np.concatenate(([-2.51e-6], np.linspace(-2.5e-6, 2.5e-6,
                                                       20), [2.51e-6]))
    points_y = np.concatenate(([0.25e-6], params, [2e-6]))
    n_interpolation_points = 100
    px = np.linspace(min(points_x), max(points_x), n_interpolation_points)
    interpolator = sp.interpolate.interp1d(points_x, points_y, kind='cubic')
コード例 #12
0
import scipy as sp

from lumopt.utilities.load_lumerical_scripts import load_from_lsf
from lumopt.utilities.wavelengths import Wavelengths
from lumopt.geometries.polygon import FunctionDefinedPolygon
from lumopt.figures_of_merit.modematch import ModeMatch
from lumopt.optimizers.generic_optimizers import ScipyOptimizers
from lumopt.optimization import Optimization

######## DEFINE BASE SIMULATION ########
crossing_base = load_from_lsf(
    os.path.join(os.path.dirname(__file__),
                 'crossing_base_TE_modematch_2D.lsf'))

######## DEFINE SPECTRAL RANGE #########
wavelengths = Wavelengths(start=1300e-9, stop=1800e-9, points=21)


######## DEFINE OPTIMIZABLE GEOMETRY ########
def cross(params):
    y_end = params[-1]
    x_end = 0 - y_end
    points_x = np.concatenate(([-2.01e-6], np.linspace(-2e-6, x_end, 10)))
    points_y = np.concatenate(([0.25e-6], params))
    n_interpolation_points = 50
    polygon_points_x = np.linspace(min(points_x), max(points_x),
                                   n_interpolation_points)
    interpolator = sp.interpolate.interp1d(points_x, points_y, kind='cubic')
    polygon_points_y = [
        max(min(point, 1e-6), -1e-6)
        for point in interpolator(polygon_points_x)
コード例 #13
0
ファイル: modematch.py プロジェクト: sbuchbinder/lumopt
 def get_wavelengths(sim):
     return Wavelengths(
         sim.fdtd.getglobalsource('wavelength start'),
         sim.fdtd.getglobalsource('wavelength stop'),
         sim.fdtd.getglobalmonitor('frequency points')).asarray()
コード例 #14
0
def runGratingOptimization(bandwidth_in_nm, etch_depth, n_grates, params):

    bounds = [(0.1, 1)] * 4
    bounds[0] = (-3, 3)  #< Starting position
    bounds[1] = (0, 0.1)  #< Scaling parameter R
    bounds[2] = (1.5, 3)  #< Parameter a
    bounds[3] = (0, 2)  #< Parameter b

    def grating_params_pos(params,
                           output_waveguide_length=0.5e-6,
                           height=220e-9,
                           y0=0):
        x_begin = -3e-6
        y3 = y0 + height
        y1 = y3 - etch_depth

        x_start = params[0] * 1e-6  #< First parameter is the starting position
        x0 = x_start
        R = params[1] * 1e6  #< second parameter (unit is 1/um)
        a = params[2]  #< Third parameter (dim-less)
        b = params[3]  #< Fourth parameter (dim-less)

        verts = np.array([[x_begin, y0], [x_begin, y3], [x0, y3], [x0, y1]])

        lambda_c = 1.55e-6
        F0 = 0.95

        ## Iterate over all but the last
        for i in range(n_grates - 1):
            F = F0 - R * (x0 - x_start)
            Lambda = lambda_c / (a + F * b)
            x1 = x0 + (1 - F) * Lambda  #< Width of the etched region
            x2 = x0 + Lambda  #< Rest of cell
            verts = np.concatenate(
                (verts, [[x1, y1], [x1, y3], [x2, y3], [x2, y1]]), axis=0)
            x0 = x2

        F = F0 - R * (x0 - x_start)
        Lambda = lambda_c / (a + F * b)
        x1 = x0 + (1 - F) * Lambda  #< Width of the etched region
        x_end = x1 + output_waveguide_length
        verts = np.concatenate(
            (verts, [[x1, y1], [x1, y3], [x_end, y3], [x_end, y0]]), axis=0)

        return verts

    geometry = FunctionDefinedPolygon(func=grating_params_pos,
                                      initial_params=params,
                                      bounds=bounds,
                                      z=0.0,
                                      depth=110e-9,
                                      eps_out=1.44**2,
                                      eps_in=3.47668**2,
                                      edge_precision=5,
                                      dx=1e-3)

    ######## DEFINE FIGURE OF MERIT ########
    fom = ModeMatch(monitor_name='fom',
                    mode_number=1,
                    direction='Backward',
                    target_T_fwd=lambda wl: np.ones(wl.size),
                    norm_p=1)

    ######## DEFINE OPTIMIZATION ALGORITHM ########
    optimizer = ScipyOptimizers(max_iter=25,
                                method='L-BFGS-B',
                                scaling_factor=1,
                                pgtol=1e-6)

    ######## DEFINE BASE SIMULATION ########
    base_script = load_from_lsf(
        os.path.join(os.path.dirname(__file__),
                     'grating_coupler_2D_2etch.lsf'))

    ######## PUT EVERYTHING TOGETHER ########
    lambda_start = 1550 - bandwidth_in_nm / 2
    lambda_end = 1550 + bandwidth_in_nm / 2
    lambda_pts = int(bandwidth_in_nm / 10) + 1
    wavelengths = Wavelengths(start=lambda_start * 1e-9,
                              stop=lambda_end * 1e-9,
                              points=lambda_pts)
    opt = Optimization(base_script=base_script,
                       wavelengths=wavelengths,
                       fom=fom,
                       geometry=geometry,
                       optimizer=optimizer,
                       hide_fdtd_cad=True,
                       use_deps=True)

    ######## RUN THE OPTIMIZER ########
    opt.run()
コード例 #15
0
ファイル: WDM_splitter.py プロジェクト: sbuchbinder/lumopt
from lumopt.geometries.polygon import FunctionDefinedPolygon
from lumopt.figures_of_merit.modematch import ModeMatch
from lumopt.optimizers.generic_optimizers import ScipyOptimizers
from lumopt.optimization import Optimization

######## DEFINE BASE SIMULATION ########
# Use the same script for both simulations, but it's just to keep the example simple. You could use two.
script_1550 = load_from_lsf(
    os.path.join(os.path.dirname(__file__), 'WDM_splitter_base_TE_1550.lsf'))
script_1310 = load_from_lsf(
    os.path.join(os.path.dirname(__file__),
                 'WDM_splitter_base_TE_1550.lsf')).replace(
                     '1550e-9', '1310e-9')

######## DEFINE SPECTRAL RANGE #########
wavelengths_1551 = Wavelengths(start=1550e-9, stop=1550e-9, points=1)
wavelengths_1310 = Wavelengths(start=1310e-9, stop=1310e-9, points=1)

######## DEFINE OPTIMIZABLE GEOMETRY ########
separation = 500.0e-9
size_x = 10.0e-6


def lower_coupler_arm(params, n_points=10):
    points_x = np.concatenate(
        ([0.5e-6], np.linspace(0.55e-6, size_x - 0.55e-6,
                               20), [size_x - 0.5e-6]))
    points_y = np.concatenate(
        ([-separation / 2], params - separation / 2,
         params[::-1] - separation / 2, [-separation / 2]))
    n_interpolation_points = 100