def show_more(self): from lux.action.custom import custom from lux.action.correlation import correlation from lux.action.univariate import univariate from lux.action.enhance import enhance from lux.action.filter import filter from lux.action.generalize import generalize from lux.action.row_group import row_group from lux.action.column_group import column_group self._rec_info = [] if (self.pre_aggregated): if (self.columns.name is not None): self._append_recInfo(row_group(self)) if (self.index.name is not None): self._append_recInfo(column_group(self)) else: if (self.current_vis is None): no_vis = True one_current_vis = False multiple_current_vis = False else: no_vis = len(self.current_vis) == 0 one_current_vis = len(self.current_vis) == 1 multiple_current_vis = len(self.current_vis) > 1 if (no_vis): self._append_recInfo(correlation(self)) self._append_recInfo(univariate(self, "quantitative")) self._append_recInfo(univariate(self, "nominal")) self._append_recInfo(univariate(self, "temporal")) elif (one_current_vis): self._append_recInfo(enhance(self)) self._append_recInfo(filter(self)) self._append_recInfo(generalize(self)) elif (multiple_current_vis): self._append_recInfo(custom(self)) # Store _rec_info into a more user-friendly dictionary form self.recommendation = {} for rec_info in self._rec_info: action_type = rec_info["action"] vc = rec_info["collection"] if (self.plot_config): for vis in self.current_vis: vis.plot_config = self.plot_config for vis in vc: vis.plot_config = self.plot_config if (len(vc) > 0): self.recommendation[action_type] = vc self.clear_filter()
def maintain_recs(self): # `rec_df` is the dataframe to generate the recommendations on show_prev = False # flag indicating whether rec_df is showing previous df or current self if self._prev is not None: rec_df = self._prev rec_df._message = Message() rec_df.maintain_metadata( ) # the prev dataframe may not have been printed before last_event = self.history._events[-1].name rec_df._message.append( f"Lux is visualizing the previous version of the dataframe before you applied <code>{last_event}</code>." ) show_prev = True else: rec_df = self rec_df._message = Message() # Add warning message if there exist ID fields id_fields_str = "" if (len(rec_df.data_type["id"]) > 0): for id_field in rec_df.data_type["id"]: id_fields_str += f"<code>{id_field}</code>, " id_fields_str = id_fields_str[:-2] rec_df._message.append( f"{id_fields_str} is not visualized since it resembles an ID field." ) rec_df._prev = None # reset _prev if (not hasattr(rec_df, "_recs_fresh") or not rec_df._recs_fresh ): # Check that recs has not yet been computed rec_infolist = [] from lux.action.custom import custom from lux.action.correlation import correlation from lux.action.univariate import univariate from lux.action.enhance import enhance from lux.action.filter import filter from lux.action.generalize import generalize from lux.action.row_group import row_group from lux.action.column_group import column_group if (rec_df.pre_aggregated): if (rec_df.columns.name is not None): rec_df._append_rec(rec_infolist, row_group(rec_df)) if (rec_df.index.name is not None): rec_df._append_rec(rec_infolist, column_group(rec_df)) else: if (rec_df.current_vis is None): no_vis = True one_current_vis = False multiple_current_vis = False else: no_vis = len(rec_df.current_vis) == 0 one_current_vis = len(rec_df.current_vis) == 1 multiple_current_vis = len(rec_df.current_vis) > 1 if (no_vis): rec_df._append_rec(rec_infolist, correlation(rec_df)) rec_df._append_rec(rec_infolist, univariate(rec_df, "quantitative")) rec_df._append_rec(rec_infolist, univariate(rec_df, "nominal")) rec_df._append_rec(rec_infolist, univariate(rec_df, "temporal")) elif (one_current_vis): rec_df._append_rec(rec_infolist, enhance(rec_df)) rec_df._append_rec(rec_infolist, filter(rec_df)) rec_df._append_rec(rec_infolist, generalize(rec_df)) elif (multiple_current_vis): rec_df._append_rec(rec_infolist, custom(rec_df)) # Store _rec_info into a more user-friendly dictionary form rec_df.recommendation = {} for rec_info in rec_infolist: action_type = rec_info["action"] vlist = rec_info["collection"] if (rec_df._plot_config): for vis in rec_df.current_vis: vis._plot_config = rec_df.plot_config for vis in vlist: vis._plot_config = rec_df.plot_config if (len(vlist) > 0): rec_df.recommendation[action_type] = vlist rec_df._rec_info = rec_infolist self._widget = rec_df.render_widget() elif ( show_prev ): # re-render widget for the current dataframe if previous rec is not recomputed self._widget = rec_df.render_widget() self._recs_fresh = True
univariate(df, ["quantitative"]) end = time.perf_counter() t_dist = end - start ################ start = time.perf_counter() univariate(df, ["nominal"]) end = time.perf_counter() t_nominal = end - start ################ start = time.perf_counter() univariate(df, ["temporal"]) end = time.perf_counter() t_temporal = end - start ################ start = time.perf_counter() correlation(df) end = time.perf_counter() t_corr = end - start ################ if (dataset == "airbnb"): df.intent = ["price"] elif (dataset == "communities"): df.intent = ["fold"] ################ start = time.perf_counter() enhance(df) end = time.perf_counter() t_enh = end - start ################ start = time.perf_counter() add_filter(df)