def line_or_bar_or_geo(ldf, dimension: Clause, measure: Clause): dim_type = dimension.data_type # If no aggregation function is specified, then default as average if measure.aggregation == "": measure.set_aggregation("mean") if dim_type == "temporal" or dim_type == "oridinal": return "line", {"x": dimension, "y": measure} else: # unordered categorical # if cardinality large than 5 then sort bars if ldf.cardinality[dimension.attribute] > 5: dimension.sort = "ascending" if utils.like_geo(dimension.get_attr()): return "geographical", {"x": dimension, "y": measure} return "bar", {"x": measure, "y": dimension}
def line_or_bar_or_geo(ldf, dimension: Clause, measure: Clause): dim_type = dimension.data_type # If no aggregation function is specified, then default as average if measure.aggregation == "": measure.set_aggregation("mean") if dim_type == "temporal" or dim_type == "oridinal": if isinstance(dimension.attribute, pd.Timestamp): # If timestamp, use the _repr_ (e.g., TimeStamp('2020-04-05 00.000')--> '2020-04-05') attr = str(dimension.attribute._date_repr) else: attr = dimension.attribute if ldf.cardinality[attr] == 1: return "bar", {"x": measure, "y": dimension} else: return "line", {"x": dimension, "y": measure} else: # unordered categorical # if cardinality large than 5 then sort bars if ldf.cardinality[dimension.attribute] > 5: dimension.sort = "ascending" if utils.like_geo(dimension.get_attr()): return "geographical", {"x": dimension, "y": measure} return "bar", {"x": measure, "y": dimension}