def meshblock(x, y): """ Create a meshed block from x and y. | (Similar to meshgrid, but axis = 0 is retained). | To enable fast blockwise calculation. Args: :x: | ndarray with ndim == 2 :y: | ndarray with ndim == 2 Returns: :X,Y: | 2 ndarrays with ndim == 3 | X.shape = (x.shape[0],y.shape[0],x.shape[1]) | Y.shape = (x.shape[0],y.shape[0],y.shape[1]) """ Y = np.transpose(np.repeat(y, x.shape[0], axis=0).reshape( (y.shape[0], x.shape[0], y.shape[1])), axes=[1, 0, 2]) X = np.repeat(x, y.shape[0], axis=0).reshape( (x.shape[0], y.shape[0], x.shape[1])) return X, Y
def normalize_to_Lw(Ill, Lw, cieobs, rflM): xyzw = lx.spd_to_xyz(Ill, cieobs = cieobs, relative = False) for i in range(Ill.shape[0]-1): Ill[i+1] = Lw*Ill[i+1]/xyzw[i,1] IllM = [] for i in range(Ill.shape[0]-1): IllM.append(np.vstack((Ill1[0],Ill[i+1]*rflM[1:,:]))) IllM = np.transpose(np.array(IllM),(1,0,2)) return Ill, IllM
def join(self, data): """ Join data along last axis and return instance. """ if data[0].ndim == 2: #faster implementation self.value = np.transpose( np.concatenate(data, axis=0).reshape((np.hstack( (len(data), data[0].shape)))), (1, 2, 0)) elif data[0].ndim == 1: self.value = np.concatenate(data, axis=0).reshape((np.hstack( (len(data), data[0].shape)))).T else: self.value = np.hstack(data)[0] return self
def ajoin(data): """ Join data on last axis. Args: :data: | tuple (ndarray, ndarray, ...) Returns: :returns: | ndarray (shape[-1] is equal to tuple length) """ if data[0].ndim == 2: #faster implementation return np.transpose(np.concatenate(data,axis=0).reshape((np.hstack((len(data),data[0].shape)))),(1,2,0)) elif data[0].ndim == 1: return np.concatenate(data,axis=0).reshape((np.hstack((len(data),data[0].shape)))).T else: return np.hstack(data)[0]
def ndset(F): """ Finds the nondominated set of a set of objective points. Args: F: | a m x mu ndarray with mu points and m objectives Returns: :ispar: | a mu-length vector with true in the nondominated points """ mu = F.shape[1] #number of points # The idea is to compare each point with the other ones f1 = np.transpose(F[..., None], axes=[0, 2, 1]) #puts in the 3D direction f1 = np.repeat(f1, mu, axis=1) f2 = np.repeat(F[..., None], mu, axis=2) # Now, for the ii-th slice, the ii-th individual is compared with all of the # others at once. Then, the usual operations of domination are checked # Checks where f1 dominates f2 aux1 = (f1 <= f2).all(axis=0, keepdims=True) aux2 = (f1 < f2).any(axis=0, keepdims=True) auxf1 = np.logical_and(aux1, aux2) # Checks where f1 is dominated by f2 aux1 = (f1 >= f2).all(axis=0, keepdims=True) aux2 = (f1 > f2).any(axis=0, keepdims=True) auxf2 = np.logical_and(aux1, aux2) # dom will be a 3D matrix (1 x mu x mu) such that, for the ii-th slice, it # will contain +1 if fii dominates the current point, -1 if it is dominated # by it, and 0 if they are incomparable dom = np.zeros((1, mu, mu), dtype=int) dom[auxf1] = 1 dom[auxf2] = -1 # Finally, the slices with no -1 are nondominated ispar = (dom != -1).all(axis=1) ispar = ispar.flatten() return ispar
def cam18sl(data, datab = None, Lb = [100], fov = 10.0, inputtype = 'xyz', direction = 'forward', outin = 'Q,aW,bW', parameters = None): """ Convert between CIE 2006 10° XYZ tristimulus values (or spectral data) and CAM18sl color appearance correlates. Args: :data: | ndarray of CIE 2006 10° absolute XYZ tristimulus values or spectral data or color appearance attributes of stimulus :datab: | ndarray of CIE 2006 10° absolute XYZ tristimulus values or spectral data of stimulus background :Lb: | [100], optional | Luminance (cd/m²) value(s) of background(s) calculated using the CIE 2006 10° CMFs | (only used in case datab == None and the background is assumed to be an Equal-Energy-White) :fov: | 10.0, optional | Field-of-view of stimulus (for size effect on brightness) :inputtpe: | 'xyz' or 'spd', optional | Specifies the type of input: | tristimulus values or spectral data for the forward mode. :direction: | 'forward' or 'inverse', optional | -'forward': xyz -> cam18sl | -'inverse': cam18sl -> xyz :outin: | 'Q,aW,bW' or str, optional | 'Q,aW,bW' (brightness and opponent signals for amount-of-neutral) | other options: 'Q,aM,bM' (colorfulness) and 'Q,aS,bS' (saturation) | Str specifying the type of | input (:direction: == 'inverse') and | output (:direction: == 'forward') :parameters: | None or dict, optional | Set of model parameters. | - None: defaults to luxpy.cam._CAM18SL_PARAMETERS | (see references below) Returns: :returns: | ndarray with color appearance correlates (:direction: == 'forward') | or | XYZ tristimulus values (:direction: == 'inverse') Notes: | * Instead of using the CIE 1964 10° CMFs in some places of the model, | the CIE 2006 10° CMFs are used througout, making it more self_consistent. | This has an effect on the k scaling factors (now different those in CAM15u) | and the illuminant E normalization for use in the chromatic adaptation transform. | (see future erratum to Hermans et al., 2018) | * The paper also used an equation for the amount of white W, which is | based on a Q value not expressed in 'bright' ('cA' = 0.937 instead of 123). | This has been corrected for in the luxpy version of the model, i.e. | _CAM18SL_PARAMETERS['cW'][0] has been changed from 2.29 to 1/11672. | (see future erratum to Hermans et al., 2018) References: 1. `Hermans, S., Smet, K. A. G., & Hanselaer, P. (2018). "Color appearance model for self-luminous stimuli." Journal of the Optical Society of America A, 35(12), 2000–2009. <https://doi.org/10.1364/JOSAA.35.002000>`_ """ if parameters is None: parameters = _CAM18SL_PARAMETERS outin = outin.split(',') #unpack model parameters: cA, cAlms, cHK, cM, cW, ca, calms, cb, cblms, cfov, k, naka, unique_hue_data = [parameters[x] for x in sorted(parameters.keys())] # precomputations: Mlms2xyz = np.linalg.inv(_CMF['2006_10']['M']) MAab = np.array([cAlms,calms,cblms]) invMAab = np.linalg.inv(MAab) #------------------------------------------------- # setup EEW reference field and default background field (Lr should be equal to Lb): # Get Lb values: if datab is not None: if inputtype != 'xyz': Lb = spd_to_xyz(datab, cieobs = '2006_10', relative = False)[...,1:2] else: Lb = datab[...,1:2] else: if isinstance(Lb,list): Lb = np2dT(Lb) # Setup EEW ref of same luminance as datab: if inputtype == 'xyz': wlr = getwlr(_CAM18SL_WL3) else: if datab is None: wlr = data[0] # use wlr of stimulus data else: wlr = datab[0] # use wlr of background data datar = np.vstack((wlr,np.ones((Lb.shape[0], wlr.shape[0])))) # create eew xyzr = spd_to_xyz(datar, cieobs = '2006_10', relative = False) # get abs. tristimulus values datar[1:] = datar[1:]/xyzr[...,1:2]*Lb # Create datab if None: if (datab is None): if inputtype != 'xyz': datab = datar.copy() else: datab = spd_to_xyz(datar, cieobs = '2006_10', relative = False) datar = datab.copy() # prepare data and datab for loop over backgrounds: # make axis 1 of datab have 'same' dimensions as data: if (data.ndim == 2): data = np.expand_dims(data, axis = 1) # add light source axis 1 if inputtype == 'xyz': if datab.shape[0] == 1: #make datab and datar have same lights source dimension (used to store different backgrounds) size as data datab = np.repeat(datab,data.shape[1],axis=0) datar = np.repeat(datar,data.shape[1],axis=0) else: if datab.shape[0] == 2: datab = np.vstack((datab[0],np.repeat(datab[1:], data.shape[1], axis = 0))) if datar.shape[0] == 2: datar = np.vstack((datar[0],np.repeat(datar[1:], data.shape[1], axis = 0))) # Flip light source/ background dim to axis 0: data = np.transpose(data, axes = (1,0,2)) #------------------------------------------------- #initialize camout: dshape = list(data.shape) dshape[-1] = len(outin) # requested number of correlates if (inputtype != 'xyz') & (direction == 'forward'): dshape[-2] = dshape[-2] - 1 # wavelength row doesn't count & only with forward can the input data be spectral camout = np.nan*np.ones(dshape) for i in range(data.shape[0]): # get rho, gamma, beta of background and reference white: if (inputtype != 'xyz'): xyzb = spd_to_xyz(np.vstack((datab[0], datab[i+1:i+2,:])), cieobs = '2006_10', relative = False) xyzr = spd_to_xyz(np.vstack((datar[0], datar[i+1:i+2,:])), cieobs = '2006_10', relative = False) else: xyzb = datab[i:i+1,:] xyzr = datar[i:i+1,:] lmsb = np.dot(_CMF['2006_10']['M'],xyzb.T).T # convert to l,m,s rgbb = (lmsb / _CMF['2006_10']['K']) * k # convert to rho, gamma, beta #lmsr = np.dot(_CMF['2006_10']['M'],xyzr.T).T # convert to l,m,s #rgbr = (lmsr / _CMF['2006_10']['K']) * k # convert to rho, gamma, beta #rgbr = rgbr/rgbr[...,1:2]*Lb[i] # calculated EEW cone excitations at same luminance values as background rgbr = np.ones(xyzr.shape)*Lb[i] # explicitely equal EEW cone excitations at same luminance values as background if direction == 'forward': # get rho, gamma, beta of stimulus: if (inputtype != 'xyz'): xyz = spd_to_xyz(data[i], cieobs = '2006_10', relative = False) elif (inputtype == 'xyz'): xyz = data[i] lms = np.dot(_CMF['2006_10']['M'],xyz.T).T # convert to l,m,s rgb = (lms / _CMF['2006_10']['K']) * k # convert to rho, gamma, beta # apply von-kries cat with D = 1: if (rgbb == 0).any(): Mcat = np.eye(3) else: Mcat = np.diag((rgbr/rgbb)[0]) rgba = np.dot(Mcat,rgb.T).T # apply naka-rushton compression: rgbc = naka_rushton(rgba, n = naka['n'], sig = naka['sig'](rgbr.mean()), noise = naka['noise'], scaling = naka['scaling']) #rgbc = np.ones(rgbc.shape)*rgbc.mean() # test if eew ends up at origin # calculate achromatic and color difference signals, A, a, b: Aab = np.dot(MAab, rgbc.T).T A,a,b = asplit(Aab) a = ca*a b = cb*b # calculate colorfullness like signal M: M = cM*((a**2.0 + b**2.0)**0.5) # calculate brightness Q: Q = cA*(A + cHK[0]*M**cHK[1]) # last term is contribution of Helmholtz-Kohlrausch effect on brightness # calculate saturation, s: s = M / Q # calculate amount of white, W: W = 1 / (1.0 + cW[0]*(s**cW[1])) # adjust Q for size (fov) of stimulus (matter of debate whether to do this before or after calculation of s or W, there was no data on s, M or W for different sized stimuli: after) Q = Q*(fov/10.0)**cfov # calculate hue, h and Hue quadrature, H: h = hue_angle(a,b, htype = 'deg') if 'H' in outin: H = hue_quadrature(h, unique_hue_data = unique_hue_data) else: H = None # calculate cart. co.: if 'aM' in outin: aM = M*np.cos(h*np.pi/180.0) bM = M*np.sin(h*np.pi/180.0) if 'aS' in outin: aS = s*np.cos(h*np.pi/180.0) bS = s*np.sin(h*np.pi/180.0) if 'aW' in outin: aW = W*np.cos(h*np.pi/180.0) bW = W*np.sin(h*np.pi/180.0) if (outin != ['Q','aW','bW']): camout[i] = eval('ajoin(('+','.join(outin)+'))') else: camout[i] = ajoin((Q,aW,bW)) elif direction == 'inverse': # get Q, M and a, b depending on input type: if 'aW' in outin: Q,a,b = asplit(data[i]) Q = Q / ((fov/10.0)**cfov) #adjust Q for size (fov) of stimulus back to that 10° ref W = (a**2.0 + b**2.0)**0.5 s = (((1.0 / W) - 1.0)/cW[0])**(1.0/cW[1]) M = s*Q if 'aM' in outin: Q,a,b = asplit(data[i]) Q = Q / ((fov/10.0)**cfov) #adjust Q for size (fov) of stimulus back to that 10° ref M = (a**2.0 + b**2.0)**0.5 if 'aS' in outin: Q,a,b = asplit(data[i]) Q = Q / ((fov/10.0)**cfov) #adjust Q for size (fov) of stimulus back to that 10° ref s = (a**2.0 + b**2.0)**0.5 M = s*Q if 'h' in outin: Q, WsM, h = asplit(data[i]) Q = Q / ((fov/10.0)**cfov) #adjust Q for size (fov) of stimulus back to that 10° ref if 'W' in outin: s = (((1.0 / WsM) - 1.0)/cW[0])**(1.0/cW[1]) M = s*Q elif 's' in outin: M = WsM*Q elif 'M' in outin: M = WsM # calculate achromatic signal, A from Q and M: A = Q/cA - cHK[0]*M**cHK[1] # calculate hue angle: h = hue_angle(a,b, htype = 'rad') # calculate a,b from M and h: a = (M/cM)*np.cos(h) b = (M/cM)*np.sin(h) a = a/ca b = b/cb # create Aab: Aab = ajoin((A,a,b)) # calculate rgbc: rgbc = np.dot(invMAab, Aab.T).T # decompress rgbc to (adapted) rgba : rgba = naka_rushton(rgbc, n = naka['n'], sig = naka['sig'](rgbr.mean()), noise = naka['noise'], scaling = naka['scaling'], direction = 'inverse') # apply inverse von-kries cat with D = 1: rgb = np.dot(np.diag((rgbb/rgbr)[0]),rgba.T).T # convert rgb to lms to xyz: lms = rgb/k*_CMF['2006_10']['K'] xyz = np.dot(Mlms2xyz,lms.T).T camout[i] = xyz if camout.shape[0] == 1: camout = np.squeeze(camout,axis = 0) return camout
def VF_colorshift_model(S, cri_type = _VF_CRI_DEFAULT, model_type = _VF_MODEL_TYPE, \ cspace = _VF_CSPACE, sampleset = None, pool = False, \ pcolorshift = {'href': np.arange(np.pi/10,2*np.pi,2*np.pi/10),'Cref' : _VF_MAXR, 'sig' : _VF_SIG}, \ vfcolor = 'k',verbosity = 0): """ Applies full vector field model calculations to spectral data. Args: :S: | nump.ndarray with spectral data. :cri_type: | _VF_CRI_DEFAULT or str or dict, optional | Specifies type of color fidelity model to use. | Controls choice of ref. ill., sample set, averaging, scaling, etc. | See luxpy.cri.spd_to_cri for more info. :modeltype: | _VF_MODEL_TYPE or 'M6' or 'M5', optional | Specifies degree 5 or degree 6 polynomial model in ab-coordinates. :cspace: | _VF_CSPACE or dict, optional | Specifies color space. See _VF_CSPACE_EXAMPLE for example structure. :sampleset: | None or str or ndarray, optional | Sampleset to be used when calculating vector field model. :pool: | False, optional | If :S: contains multiple spectra, True pools all jab data before modeling the vector field, while False models a different field for each spectrum. :pcolorshift: | default dict (see below) or user defined dict, optional | Dict containing the specification input for apply_poly_model_at_hue_x(). | Default dict = {'href': np.arange(np.pi/10,2*np.pi,2*np.pi/10), | 'Cref' : _VF_MAXR, | 'sig' : _VF_SIG, | 'labels' : '#'} | The polynomial models of degree 5 and 6 can be fully specified or summarized by the model parameters themselved OR by calculating the dCoverC and dH at resp. 5 and 6 hues. :vfcolor: | 'k', optional | For plotting the vector fields. :verbosity: | 0, optional | Report warnings or not. Returns: :returns: | list[dict] (each list element refers to a different test SPD) | with the following keys: | - 'Source': dict with ndarrays of the S, cct and duv of source spd. | - 'metrics': dict with ndarrays for: | * Rf (color fidelity: base + metameric shift) | * Rt (metameric uncertainty index) | * Rfi (specific color fidelity indices) | * Rti (specific metameric uncertainty indices) | * cri_type (str with cri_type) | - 'Jab': dict with with ndarrays for Jabt, Jabr, DEi | - 'dC/C_dH_x_sig' : | np.vstack((dCoverC_x,dCoverC_x_sig,dH_x,dH_x_sig)).T | See get_poly_model() for more info. | - 'fielddata': dict with dicts containing data on the calculated | vector-field and circle-fields: | * 'vectorfield' : {'axt': vfaxt, 'bxt' : vfbxt, | 'axr' : vfaxr, 'bxr' : vfbxr}, | * 'circlefield' : {'axt': cfaxt, 'bxt' : cfbxt, | 'axr' : cfaxr, 'bxr' : cfbxr}}, | - 'modeldata' : dict with model info: | {'pmodel': pmodel, | 'pcolorshift' : pcolorshift, | 'dab_model' : dab_model, | 'dab_res' : dab_res, | 'dab_std' : dab_std, | 'modeltype' : modeltype, | 'fmodel' : poly_model, | 'Jabtm' : Jabtm, | 'Jabrm' : Jabrm, | 'DEim' : DEim}, | - 'vshifts' :dict with various vector shifts: | * 'Jabshiftvector_r_to_t' : ndarray with difference vectors | between jabt and jabr. | * 'vshift_ab_s' : vshift_ab_s: ab-shift vectors of samples | * 'vshift_ab_s_vf' : vshift_ab_s_vf: ab-shift vectors of | VF model predictions of samples. | * 'vshift_ab_vf' : vshift_ab_vf: ab-shift vectors of VF | model predictions of vector field grid. """ if type(cri_type) == str: cri_type_str = cri_type else: cri_type_str = None # Calculate Rf, Rfi and Jabr, Jabt: Rf, Rfi, Jabt, Jabr,cct,duv,cri_type = spd_to_cri(S, cri_type= cri_type,out='Rf,Rfi,jabt,jabr,cct,duv,cri_type', sampleset=sampleset) # In case of multiple source SPDs, pool: if (len(Jabr.shape) == 3) & (Jabr.shape[1]>1) & (pool == True): #Nsamples = Jabr.shape[0] Jabr = np.transpose(Jabr,(1,0,2)) # set lamps on first dimension Jabt = np.transpose(Jabt,(1,0,2)) Jabr = Jabr.reshape(Jabr.shape[0]*Jabr.shape[1],3) # put all lamp data one after the other Jabt = Jabt.reshape(Jabt.shape[0]*Jabt.shape[1],3) Jabt = Jabt[:,None,:] # add dim = 1 Jabr = Jabr[:,None,:] out = [{} for _ in range(Jabr.shape[1])] #initialize empty list of dicts if pool == False: N = Jabr.shape[1] else: N = 1 for i in range(N): Jabr_i = Jabr[:,i,:].copy() Jabr_i = Jabr_i[:,None,:] Jabt_i = Jabt[:,i,:].copy() Jabt_i = Jabt_i[:,None,:] DEi = np.sqrt((Jabr_i[...,0] - Jabt_i[...,0])**2 + (Jabr_i[...,1] - Jabt_i[...,1])**2 + (Jabr_i[...,2] - Jabt_i[...,2])**2) # Determine polynomial model: poly_model, pmodel, dab_model, dab_res, dCHoverC_res, dab_std, dCHoverC_std = get_poly_model(Jabt_i, Jabr_i, modeltype = _VF_MODEL_TYPE) # Apply model at fixed hues: href = pcolorshift['href'] Cref = pcolorshift['Cref'] sig = pcolorshift['sig'] dCoverC_x, dCoverC_x_sig, dH_x, dH_x_sig = apply_poly_model_at_hue_x(poly_model, pmodel, dCHoverC_res, hx = href, Cxr = Cref, sig = sig) # Calculate deshifted a,b values on original samples: Jt = Jabt_i[...,0].copy() at = Jabt_i[...,1].copy() bt = Jabt_i[...,2].copy() Jr = Jabr_i[...,0].copy() ar = Jabr_i[...,1].copy() br = Jabr_i[...,2].copy() ar = ar + dab_model[:,0:1] # deshift reference to model prediction br = br + dab_model[:,1:2] # deshift reference to model prediction Jabtm = np.hstack((Jt,at,bt)) Jabrm = np.hstack((Jr,ar,br)) # calculate color differences between test and deshifted ref: # DEim = np.sqrt((Jr - Jt)**2 + (at - ar)**2 + (bt - br)**2) DEim = np.sqrt(0*(Jr - Jt)**2 + (at - ar)**2 + (bt - br)**2) # J is not used # Apply scaling function to convert DEim to Rti: scale_factor = cri_type['scale']['cfactor'] scale_fcn = cri_type['scale']['fcn'] avg = cri_type['avg'] Rfi_deshifted = scale_fcn(DEim,scale_factor) Rf_deshifted = scale_fcn(avg(DEim,axis = 0),scale_factor) rms = lambda x: np.sqrt(np.sum(x**2,axis=0)/x.shape[0]) Rf_deshifted_rms = scale_fcn(rms(DEim),scale_factor) # Generate vector field: vfaxt,vfbxt,vfaxr,vfbxr = generate_vector_field(poly_model, pmodel,axr = np.arange(-_VF_MAXR,_VF_MAXR+_VF_DELTAR,_VF_DELTAR), bxr = np.arange(-_VF_MAXR,_VF_MAXR+_VF_DELTAR,_VF_DELTAR), limit_grid_radius = _VF_MAXR,color = 0) vfaxt,vfbxt,vfaxr,vfbxr = generate_vector_field(poly_model, pmodel,axr = np.arange(-_VF_MAXR,_VF_MAXR+_VF_DELTAR,_VF_DELTAR), bxr = np.arange(-_VF_MAXR,_VF_MAXR+_VF_DELTAR,_VF_DELTAR), limit_grid_radius = _VF_MAXR,color = 0) # Calculate ab-shift vectors of samples and VF model predictions: vshift_ab_s = calculate_shiftvectors(Jabt_i, Jabr_i, average = False, vtype = 'ab')[:,0,0:3] vshift_ab_s_vf = calculate_shiftvectors(Jabtm,Jabrm, average = False, vtype = 'ab') # Calculate ab-shift vectors using vector field model: Jabt_vf = np.hstack((np.zeros((vfaxt.shape[0],1)), vfaxt, vfbxt)) Jabr_vf = np.hstack((np.zeros((vfaxr.shape[0],1)), vfaxr, vfbxr)) vshift_ab_vf = calculate_shiftvectors(Jabt_vf,Jabr_vf, average = False, vtype = 'ab') # Generate circle field: x,y = plotcircle(radii = np.arange(0,_VF_MAXR+_VF_DELTAR,10), angles = np.arange(0,359,1), out = 'x,y') cfaxt,cfbxt,cfaxr,cfbxr = generate_vector_field(poly_model, pmodel,make_grid = False,axr = x[:,None], bxr = y[:,None], limit_grid_radius = _VF_MAXR,color = 0) out[i] = {'Source' : {'S' : S, 'cct' : cct[i] , 'duv': duv[i]}, 'metrics' : {'Rf':Rf[:,i], 'Rt': Rf_deshifted, 'Rt_rms' : Rf_deshifted_rms, 'Rfi':Rfi[:,i], 'Rti': Rfi_deshifted, 'cri_type' : cri_type_str}, 'Jab' : {'Jabt' : Jabt_i, 'Jabr' : Jabr_i, 'DEi' : DEi}, 'dC/C_dH_x_sig' : np.vstack((dCoverC_x,dCoverC_x_sig,dH_x,dH_x_sig)).T, 'fielddata': {'vectorfield' : {'axt': vfaxt, 'bxt' : vfbxt, 'axr' : vfaxr, 'bxr' : vfbxr}, 'circlefield' : {'axt': cfaxt, 'bxt' : cfbxt, 'axr' : cfaxr, 'bxr' : cfbxr}}, 'modeldata' : {'pmodel': pmodel, 'pcolorshift' : pcolorshift, 'dab_model' : dab_model, 'dab_res' : dab_res,'dab_std' : dab_std, 'model_type' : model_type, 'fmodel' : poly_model, 'Jabtm' : Jabtm, 'Jabrm' : Jabrm, 'DEim' : DEim}, 'vshifts' : {'Jabshiftvector_r_to_t' : np.hstack((Jt-Jr,at-ar,bt-br)), 'vshift_ab_s' : vshift_ab_s, 'vshift_ab_s_vf' : vshift_ab_s_vf, 'vshift_ab_vf' : vshift_ab_vf}} return out
def cam15u(data, fov=10.0, inputtype='xyz', direction='forward', outin='Q,aW,bW', parameters=None): """ Convert between CIE 2006 10° XYZ tristimulus values (or spectral data) and CAM15u color appearance correlates. Args: :data: | ndarray of CIE 2006 10° XYZ tristimulus values or spectral data or color appearance attributes :fov: | 10.0, optional | Field-of-view of stimulus (for size effect on brightness) :inputtpe: | 'xyz' or 'spd', optional | Specifies the type of input: | tristimulus values or spectral data for the forward mode. :direction: | 'forward' or 'inverse', optional | -'forward': xyz -> cam15u | -'inverse': cam15u -> xyz :outin: | 'Q,aW,bW' or str, optional | 'Q,aW,bW' (brightness and opponent signals for amount-of-neutral) | other options: 'Q,aM,bM' (colorfulness) and 'Q,aS,bS' (saturation) | Str specifying the type of | input (:direction: == 'inverse') and | output (:direction: == 'forward') :parameters: | None or dict, optional | Set of model parameters. | - None: defaults to luxpy.cam._CAM15U_PARAMETERS | (see references below) Returns: :returns: | ndarray with color appearance correlates (:direction: == 'forward') | or | XYZ tristimulus values (:direction: == 'inverse') References: 1. `M. Withouck, K. A. G. Smet, W. R. Ryckaert, and P. Hanselaer, “Experimental driven modelling of the color appearance of unrelated self-luminous stimuli: CAM15u,” Opt. Express, vol. 23, no. 9, pp. 12045–12064, 2015. <https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-9-12045&origin=search>`_ 2. `M. Withouck, K. A. G. Smet, and P. Hanselaer, (2015), “Brightness prediction of different sized unrelated self-luminous stimuli,” Opt. Express, vol. 23, no. 10, pp. 13455–13466. <https://www.osapublishing.org/oe/abstract.cfm?uri=oe-23-10-13455&origin=search>`_ """ if parameters is None: parameters = _CAM15U_PARAMETERS outin = outin.split(',') #unpack model parameters: Mxyz2rgb, cA, cAlms, cHK, cM, cW, ca, calms, cb, cblms, cfov, cp, k, unique_hue_data = [ parameters[x] for x in sorted(parameters.keys()) ] # precomputations: invMxyz2rgb = np.linalg.inv(Mxyz2rgb) MAab = np.array([cAlms, calms, cblms]) invMAab = np.linalg.inv(MAab) #initialize data and camout: data = np2d(data) if len(data.shape) == 2: data = np.expand_dims(data, axis=0) # avoid looping if not necessary if (data.shape[0] > data.shape[1]): # loop over shortest dim. flipaxis0and1 = True data = np.transpose(data, axes=(1, 0, 2)) else: flipaxis0and1 = False dshape = list(data.shape) dshape[-1] = len(outin) # requested number of correlates if (inputtype != 'xyz') & (direction == 'forward'): dshape[-2] = dshape[ -2] - 1 # wavelength row doesn't count & only with forward can the input data be spectral camout = np.nan * np.ones(dshape) for i in range(data.shape[0]): if (inputtype != 'xyz') & (direction == 'forward'): xyz = spd_to_xyz(data[i], cieobs='2006_10', relative=False) lms = np.dot(_CMF['2006_10']['M'], xyz.T).T # convert to l,m,s rgb = (lms / _CMF['2006_10']['K']) * k # convert to rho, gamma, beta elif (inputtype == 'xyz') & (direction == 'forward'): rgb = np.dot(Mxyz2rgb, data[i].T).T if direction == 'forward': # apply cube-root compression: rgbc = rgb**(cp) # calculate achromatic and color difference signals, A, a, b: Aab = np.dot(MAab, rgbc.T).T A, a, b = asplit(Aab) A = cA * A a = ca * a b = cb * b # calculate colorfullness like signal M: M = cM * ((a**2.0 + b**2.0)**0.5) # calculate brightness Q: Q = A + cHK[0] * M**cHK[ 1] # last term is contribution of Helmholtz-Kohlrausch effect on brightness # calculate saturation, s: s = M / Q # calculate amount of white, W: W = 100.0 / (1.0 + cW[0] * (s**cW[1])) # adjust Q for size (fov) of stimulus (matter of debate whether to do this before or after calculation of s or W, there was no data on s, M or W for different sized stimuli: after) Q = Q * (fov / 10.0)**cfov # calculate hue, h and Hue quadrature, H: h = hue_angle(a, b, htype='deg') if 'H' in outin: H = hue_quadrature(h, unique_hue_data=unique_hue_data) else: H = None # calculate cart. co.: if 'aM' in outin: aM = M * np.cos(h * np.pi / 180.0) bM = M * np.sin(h * np.pi / 180.0) if 'aS' in outin: aS = s * np.cos(h * np.pi / 180.0) bS = s * np.sin(h * np.pi / 180.0) if 'aW' in outin: aW = W * np.cos(h * np.pi / 180.0) bW = W * np.sin(h * np.pi / 180.0) if (outin != ['Q', 'aW', 'bW']): camout[i] = eval('ajoin((' + ','.join(outin) + '))') else: camout[i] = ajoin((Q, aW, bW)) elif direction == 'inverse': # get Q, M and a, b depending on input type: if 'aW' in outin: Q, a, b = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref W = (a**2.0 + b**2.0)**0.5 s = (((100 / W) - 1.0) / cW[0])**(1.0 / cW[1]) M = s * Q if 'aM' in outin: Q, a, b = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref M = (a**2.0 + b**2.0)**0.5 if 'aS' in outin: Q, a, b = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref s = (a**2.0 + b**2.0)**0.5 M = s * Q if 'h' in outin: Q, WsM, h = asplit(data[i]) Q = Q / ( (fov / 10.0)**cfov ) #adjust Q for size (fov) of stimulus back to that 10° ref if 'W' in outin: s = (((100.0 / WsM) - 1.0) / cW[0])**(1.0 / cW[1]) M = s * Q elif 's' in outin: M = WsM * Q elif 'M' in outin: M = WsM # calculate achromatic signal, A from Q and M: A = Q - cHK[0] * M**cHK[1] A = A / cA # calculate hue angle: h = hue_angle(a, b, htype='rad') # calculate a,b from M and h: a = (M / cM) * np.cos(h) b = (M / cM) * np.sin(h) a = a / ca b = b / cb # create Aab: Aab = ajoin((A, a, b)) # calculate rgbc: rgbc = np.dot(invMAab, Aab.T).T # decompress rgbc to rgb: rgb = rgbc**(1 / cp) # convert rgb to xyz: xyz = np.dot(invMxyz2rgb, rgb.T).T camout[i] = xyz if flipaxis0and1 == True: # loop over shortest dim. camout = np.transpose(camout, axes=(1, 0, 2)) if camout.shape[0] == 1: camout = np.squeeze(camout, axis=0) return camout
def plotellipse(v, cspace_in = 'Yxy', cspace_out = None, nsamples = 100, \ show = True, axh = None, \ line_color = 'darkgray', line_style = ':', line_width = 1, line_marker = '', line_markersize = 4,\ plot_center = False, center_marker = 'o', center_color = 'darkgray', center_markersize = 4,\ show_grid = True, label_fontname = 'Times New Roman', label_fontsize = 12,\ out = None): """ Plot ellipse(s) given in v-format [Rmax,Rmin,xc,yc,theta]. Args: :v: | (Nx5) ndarray | ellipse parameters [Rmax,Rmin,xc,yc,theta] :cspace_in: | 'Yxy', optional | Color space of v. | If None: no color space assumed. Axis labels assumed ('x','y'). :cspace_out: | None, optional | Color space to plot ellipse(s) in. | If None: plot in cspace_in. :nsamples: | 100 or int, optional | Number of points (samples) in ellipse boundary :show: | True or boolean, optional | Plot ellipse(s) (True) or not (False) :axh: | None, optional | Ax-handle to plot ellipse(s) in. | If None: create new figure with axes. :line_color: | 'darkgray', optional | Color to plot ellipse(s) in. :line_style: | ':', optional | Linestyle of ellipse(s). :line_width': | 1, optional | Width of ellipse boundary line. :line_marker: | 'none', optional | Marker for ellipse boundary. :line_markersize: | 4, optional | Size of markers in ellipse boundary. :plot_center: | False, optional | Plot center of ellipse: yes (True) or no (False) :center_color: | 'darkgray', optional | Color to plot ellipse center in. :center_marker: | 'o', optional | Marker for ellipse center. :center_markersize: | 4, optional | Size of marker of ellipse center. :show_grid: | True, optional | Show grid (True) or not (False) :label_fontname: | 'Times New Roman', optional | Sets font type of axis labels. :label_fontsize: | 12, optional | Sets font size of axis labels. :out: | None, optional | Output of function | If None: returns None. Can be used to output axh of newly created | figure axes or to return Yxys an ndarray with coordinates of | ellipse boundaries in cspace_out (shape = (nsamples,3,N)) Returns: :returns: None, or whatever set by :out:. """ Yxys = np.zeros((nsamples,3,v.shape[0])) ellipse_vs = np.zeros((v.shape[0],5)) for i,vi in enumerate(v): # Set sample density of ellipse boundary: t = np.linspace(0, 2*np.pi, nsamples) a = vi[0] # major axis b = vi[1] # minor axis xyc = vi[2:4,None] # center theta = vi[-1] # rotation angle # define rotation matrix: R = np.hstack(( np.vstack((np.cos(theta), np.sin(theta))), np.vstack((-np.sin(theta), np.cos(theta))))) # Calculate ellipses: Yxyc = np.vstack((1, xyc)).T Yxy = np.vstack((np.ones((1,nsamples)), xyc + np.dot(R, np.vstack((a*np.cos(t), b*np.sin(t))) ))).T Yxys[:,:,i] = Yxy # Convert to requested color space: if (cspace_out is not None) & (cspace_in is not None): Yxy = colortf(Yxy, cspace_in + '>' + cspace_out) Yxyc = colortf(Yxyc, cspace_in + '>' + cspace_out) Yxys[:,:,i] = Yxy # get ellipse parameters in requested color space: ellipse_vs[i,:] = math.fit_ellipse(Yxy[:,1:]) #de = np.sqrt((Yxy[:,1]-Yxyc[:,1])**2 + (Yxy[:,2]-Yxyc[:,2])**2) #ellipse_vs[i,:] = np.hstack((de.max(),de.min(),Yxyc[:,1],Yxyc[:,2],np.nan)) # nan because orientation is xy, but request is some other color space. Change later to actual angle when fitellipse() has been implemented # plot ellipses: if show == True: if (axh is None) & (i == 0): fig = plt.figure() axh = fig.add_subplot(111) if (cspace_in is None): xlabel = 'x' ylabel = 'y' else: xlabel = _CSPACE_AXES[cspace_in][1] ylabel = _CSPACE_AXES[cspace_in][2] if (cspace_out is not None): xlabel = _CSPACE_AXES[cspace_out][1] ylabel = _CSPACE_AXES[cspace_out][2] if plot_center == True: plt.plot(Yxyc[:,1],Yxyc[:,2],color = center_color, linestyle = 'none', marker = center_marker, markersize = center_markersize) plt.plot(Yxy[:,1],Yxy[:,2],color = line_color, linestyle = line_style, linewidth = line_width, marker = line_marker, markersize = line_markersize) plt.xlabel(xlabel, fontname = label_fontname, fontsize = label_fontsize) plt.ylabel(ylabel, fontname = label_fontname, fontsize = label_fontsize) if show_grid == True: plt.grid() #plt.show() Yxys = np.transpose(Yxys,axes=(0,2,1)) if out is not None: return eval(out) else: return None
def cam_sww16(data, dataw = None, Yb = 20.0, Lw = 400.0, Ccwb = None, relative = True, \ parameters = None, inputtype = 'xyz', direction = 'forward', \ cieobs = '2006_10'): """ A simple principled color appearance model based on a mapping of the Munsell color system. | This function implements the JOSA A (parameters = 'JOSA') published model. Args: :data: | ndarray with input tristimulus values | or spectral data | or input color appearance correlates | Can be of shape: (N [, xM], x 3), whereby: | N refers to samples and M refers to light sources. | Note that for spectral input shape is (N x (M+1) x wl) :dataw: | None or ndarray, optional | Input tristimulus values or spectral data of white point. | None defaults to the use of CIE illuminant C. :Yb: | 20.0, optional | Luminance factor of background (perfect white diffuser, Yw = 100) :Lw: | 400.0, optional | Luminance (cd/m²) of white point. :Ccwb: | None, optional | Degree of cognitive adaptation (white point balancing) | If None: use [..,..] from parameters dict. :relative: | True or False, optional | True: xyz tristimulus values are relative (Yw = 100) :parameters: | None or str or dict, optional | Dict with model parameters. | - None: defaults to luxpy.cam._CAM_SWW_2016_PARAMETERS['JOSA'] | - str: 'best-fit-JOSA' or 'best-fit-all-Munsell' | - dict: user defined model parameters | (dict should have same structure) :inputtype: | 'xyz' or 'spd', optional | Specifies the type of input: | tristimulus values or spectral data for the forward mode. :direction: | 'forward' or 'inverse', optional | -'forward': xyz -> cam_sww_2016 | -'inverse': cam_sww_2016 -> xyz :cieobs: | '2006_10', optional | CMF set to use to perform calculations where spectral data is involved (inputtype == 'spd'; dataw = None) | Other options: see luxpy._CMF['types'] Returns: :returns: | ndarray with color appearance correlates (:direction: == 'forward') | or | XYZ tristimulus values (:direction: == 'inverse') Notes: | This function implements the JOSA A (parameters = 'JOSA') published model. | With: | 1. A correction for the parameter | in Eq.4 of Fig. 11: 0.952 --> -0.952 | | 2. The delta_ac and delta_bc white-balance shifts in Eq. 5e & 5f | should be: -0.028 & 0.821 | | (cfr. Ccwb = 0.66 in: | ab_test_out = ab_test_int - Ccwb*ab_gray_adaptation_field_int)) References: 1. `Smet, K. A. G., Webster, M. A., & Whitehead, L. A. (2016). A simple principled approach for modeling and understanding uniform color metrics. Journal of the Optical Society of America A, 33(3), A319–A331. <https://doi.org/10.1364/JOSAA.33.00A319>`_ """ # get model parameters args = locals().copy() if parameters is None: parameters = _CAM_SWW16_PARAMETERS['JOSA'] if isinstance(parameters,str): parameters = _CAM_SWW16_PARAMETERS[parameters] parameters = put_args_in_db(parameters,args) #overwrite parameters with other (not-None) args input #unpack model parameters: Cc, Ccwb, Cf, Mxyz2lms, cLMS, cab_int, cab_out, calpha, cbeta,cga1, cga2, cgb1, cgb2, cl_int, clambda, lms0 = [parameters[x] for x in sorted(parameters.keys())] # setup default adaptation field: if (dataw is None): dataw = _CIE_ILLUMINANTS['C'].copy() # get illuminant C xyzw = spd_to_xyz(dataw, cieobs = cieobs,relative=False) # get abs. tristimulus values if relative == False: #input is expected to be absolute dataw[1:] = Lw*dataw[1:]/xyzw[:,1:2] #dataw = Lw*dataw # make absolute else: dataw = dataw # make relative (Y=100) if inputtype == 'xyz': dataw = spd_to_xyz(dataw, cieobs = cieobs, relative = relative) # precomputations: Mxyz2lms = np.dot(np.diag(cLMS),math.normalize_3x3_matrix(Mxyz2lms, np.array([[1, 1, 1]]))) # normalize matrix for xyz-> lms conversion to ill. E weighted with cLMS invMxyz2lms = np.linalg.inv(Mxyz2lms) MAab = np.array([clambda,calpha,cbeta]) invMAab = np.linalg.inv(MAab) #initialize data and camout: data = np2d(data).copy() # stimulus data (can be upto NxMx3 for xyz, or [N x (M+1) x wl] for spd)) dataw = np2d(dataw).copy() # white point (can be upto Nx3 for xyz, or [(N+1) x wl] for spd) # make axis 1 of dataw have 'same' dimensions as data: if (data.ndim == 2): data = np.expand_dims(data, axis = 1) # add light source axis 1 if inputtype == 'xyz': if dataw.shape[0] == 1: #make dataw have same lights source dimension size as data dataw = np.repeat(dataw,data.shape[1],axis=0) else: if dataw.shape[0] == 2: dataw = np.vstack((dataw[0],np.repeat(dataw[1:], data.shape[1], axis = 0))) # Flip light source dim to axis 0: data = np.transpose(data, axes = (1,0,2)) # Initialize output array: dshape = list(data.shape) dshape[-1] = 3 # requested number of correlates: l_int, a_int, b_int if (inputtype != 'xyz') & (direction == 'forward'): dshape[-2] = dshape[-2] - 1 # wavelength row doesn't count & only with forward can the input data be spectral camout = np.nan*np.ones(dshape) # apply forward/inverse model for each row in data: for i in range(data.shape[0]): # stage 1: calculate photon rates of stimulus and adapting field, lmst & lmsf: if (inputtype != 'xyz'): if relative == True: xyzw_abs = spd_to_xyz(np.vstack((dataw[0],dataw[i+1])), cieobs = cieobs, relative = False) dataw[i+1] = Lw*dataw[i+1]/xyzw_abs[0,1] # make absolute xyzw = spd_to_xyz(np.vstack((dataw[0],dataw[i+1])), cieobs = cieobs, relative = False) lmsw = 683.0*np.dot(Mxyz2lms,xyzw.T).T/_CMF[cieobs]['K'] lmsf = (Yb/100.0)*lmsw # calculate adaptation field and convert to l,m,s if (direction == 'forward'): if relative == True: data[i,1:,:] = Lw*data[i,1:,:]/xyzw_abs[0,1] # make absolute xyzt = spd_to_xyz(data[i], cieobs = cieobs, relative = False)/_CMF[cieobs]['K'] lmst = 683.0*np.dot(Mxyz2lms,xyzt.T).T # convert to l,m,s else: lmst = lmsf # put lmsf in lmst for inverse-mode elif (inputtype == 'xyz'): if relative == True: dataw[i] = Lw*dataw[i]/100.0 # make absolute lmsw = 683.0* np.dot(Mxyz2lms, dataw[i].T).T /_CMF[cieobs]['K'] # convert to lms lmsf = (Yb/100.0)*lmsw if (direction == 'forward'): if relative == True: data[i] = Lw*data[i]/100.0 # make absolute lmst = 683.0* np.dot(Mxyz2lms, data[i].T).T /_CMF[cieobs]['K'] # convert to lms else: lmst = lmsf # put lmsf in lmst for inverse-mode # stage 2: calculate cone outputs of stimulus lmstp lmstp = math.erf(Cc*(np.log(lmst/lms0) + Cf*np.log(lmsf/lms0))) lmsfp = math.erf(Cc*(np.log(lmsf/lms0) + Cf*np.log(lmsf/lms0))) lmstp = np.vstack((lmsfp,lmstp)) # add adaptation field lms temporarily to lmsp for quick calculation # stage 3: calculate optic nerve signals, lam*, alphp, betp: lstar,alph, bet = asplit(np.dot(MAab, lmstp.T).T) alphp = cga1[0]*alph alphp[alph<0] = cga1[1]*alph[alph<0] betp = cgb1[0]*bet betp[bet<0] = cgb1[1]*bet[bet<0] # stage 4: calculate recoded nerve signals, alphapp, betapp: alphpp = cga2[0]*(alphp + betp) betpp = cgb2[0]*(alphp - betp) # stage 5: calculate conscious color perception: lstar_int = cl_int[0]*(lstar + cl_int[1]) alph_int = cab_int[0]*(np.cos(cab_int[1]*np.pi/180.0)*alphpp - np.sin(cab_int[1]*np.pi/180.0)*betpp) bet_int = cab_int[0]*(np.sin(cab_int[1]*np.pi/180.0)*alphpp + np.cos(cab_int[1]*np.pi/180.0)*betpp) lstar_out = lstar_int if direction == 'forward': if Ccwb is None: alph_out = alph_int - cab_out[0] bet_out = bet_int - cab_out[1] else: Ccwb = Ccwb*np.ones((2)) Ccwb[Ccwb<0.0] = 0.0 Ccwb[Ccwb>1.0] = 1.0 alph_out = alph_int - Ccwb[0]*alph_int[0] # white balance shift using adaptation gray background (Yb=20%), with Ccw: degree of adaptation bet_out = bet_int - Ccwb[1]*bet_int[0] camout[i] = np.vstack((lstar_out[1:],alph_out[1:],bet_out[1:])).T # stack together and remove adaptation field from vertical stack elif direction == 'inverse': labf_int = np.hstack((lstar_int[0],alph_int[0],bet_int[0])) # get lstar_out, alph_out & bet_out for data: lstar_out, alph_out, bet_out = asplit(data[i]) # stage 5 inverse: # undo cortical white-balance: if Ccwb is None: alph_int = alph_out + cab_out[0] bet_int = bet_out + cab_out[1] else: Ccwb = Ccwb*np.ones((2)) Ccwb[Ccwb<0.0] = 0.0 Ccwb[Ccwb>1.0] = 1.0 alph_int = alph_out + Ccwb[0]*alph_int[0] # inverse white balance shift using adaptation gray background (Yb=20%), with Ccw: degree of adaptation bet_int = bet_out + Ccwb[1]*bet_int[0] lstar_int = lstar_out alphpp = (1.0 / cab_int[0]) * (np.cos(-cab_int[1]*np.pi/180.0)*alph_int - np.sin(-cab_int[1]*np.pi/180.0)*bet_int) betpp = (1.0 / cab_int[0]) * (np.sin(-cab_int[1]*np.pi/180.0)*alph_int + np.cos(-cab_int[1]*np.pi/180.0)*bet_int) lstar_int = lstar_out lstar = (lstar_int /cl_int[0]) - cl_int[1] # stage 4 inverse: alphp = 0.5*(alphpp/cga2[0] + betpp/cgb2[0]) # <-- alphpp = (Cga2.*(alphp+betp)); betp = 0.5*(alphpp/cga2[0] - betpp/cgb2[0]) # <-- betpp = (Cgb2.*(alphp-betp)); # stage 3 invers: alph = alphp/cga1[0] bet = betp/cgb1[0] sa = np.sign(cga1[1]) sb = np.sign(cgb1[1]) alph[(sa*alphp)<0.0] = alphp[(sa*alphp)<0] / cga1[1] bet[(sb*betp)<0.0] = betp[(sb*betp)<0] / cgb1[1] lab = ajoin((lstar, alph, bet)) # stage 2 inverse: lmstp = np.dot(invMAab,lab.T).T lmstp[lmstp<-1.0] = -1.0 lmstp[lmstp>1.0] = 1.0 lmstp = math.erfinv(lmstp) / Cc - Cf*np.log(lmsf/lms0) lmst = np.exp(lmstp) * lms0 # stage 1 inverse: xyzt = np.dot(invMxyz2lms,lmst.T).T if relative == True: xyzt = (100.0/Lw) * xyzt camout[i] = xyzt # if flipaxis0and1 == True: # loop over shortest dim. # camout = np.transpose(camout, axes = (1,0,2)) # Flip light source dim back to axis 1: camout = np.transpose(camout, axes = (1,0,2)) if camout.shape[0] == 1: camout = np.squeeze(camout,axis = 0) return camout