コード例 #1
0
def add_to_cmf_dict(bar=None, cieobs='indv', K=683, M=np.eye(3)):
    """
    Add set of cmfs to _CMF dict.
    
    Args:
        :bar: 
            | None, optional
            | Set of CMFs. None: initializes to empty ndarray.
        :cieobs:
            | 'indv' or str, optional
            | Name of CMF set.
        :K: 
            | 683 (lm/W), optional
            | Conversion factor from radiometric to photometric quantity.
        :M: 
            | np.eye, optional
            | Matrix for lms to xyz conversion.

    """
    if bar is None:
        wl3 = getwlr(_WL3)
        bar = np.vstack((wl3, np.empty((3, wl3.shape[0]))))
    _CMF['types'].append(cieobs)
    _CMF[cieobs] = {'bar': bar}
    _CMF[cieobs]['K'] = K
    _CMF[cieobs]['M'] = M
コード例 #2
0
def v_to_cik(v, inverse=False):
    """
    Calculate 2x2 '(covariance matrix)^-1' elements cik 
    
    Args:
        :v: 
            | (Nx5) np.ndarray
            | ellipse parameters [Rmax,Rmin,xc,yc,theta]
        :inverse:
            | If True: return inverse of cik.
    
    Returns:
        :cik: 
            'Nx2x2' (covariance matrix)^-1
    
    Notes:
        | cik is not actually a covariance matrix,
        | only for a Gaussian or normal distribution!

    """
    v = np.atleast_2d(v)
    g11 = (1 / v[:, 0] * np.cos(v[:, 4]))**2 + (1 / v[:, 1] *
                                                np.sin(v[:, 4]))**2
    g22 = (1 / v[:, 0] * np.sin(v[:, 4]))**2 + (1 / v[:, 1] *
                                                np.cos(v[:, 4]))**2
    g12 = (1 / v[:, 0]**2 - 1 / v[:, 1]**2) * np.sin(v[:, 4]) * np.cos(v[:, 4])
    cik = np.zeros((g11.shape[0], 2, 2))

    for i in range(g11.shape[0]):
        cik[i, :, :] = np.vstack((np.hstack(
            (g11[i], g12[i])), np.hstack((g12[i], g22[i]))))
        if inverse == True:
            cik[i, :, :] = np.linalg.inv(cik[i, :, :])
    return cik
コード例 #3
0
def _complete_ldt_lid(LDT, Isym=4):
    """
    Convert LDT LID map with Isym symmetry to a 'full' map with phi: [0,360] and theta: [0,180].
    """
    cangles = LDT['h_angs']
    tangles = LDT['v_angs']
    candela_2d = LDT['candela_2d']
    if Isym == 4:
        # complete cangles:
        a = candela_2d.copy().T
        b = np.hstack((a, a[:, (a.shape[1] - 2)::-1]))
        c = np.hstack((b, b[:, (b.shape[1] - 2):0:-1]))
        candela_2d_0C360 = np.hstack((c, c[:, :1]))
        cangles = np.hstack(
            (cangles, cangles[1:] + 90, cangles[1:] + 180, cangles[1:] + 270))
        # complete  tangles:
        a = candela_2d_0C360.copy()
        b = np.vstack((a, np.zeros(a.shape)[1:, :]))
        tangles = np.hstack((tangles, tangles[1:] + 90))
        candela_2d = b
    elif Isym == -4:
        # complete cangles:
        a = candela_2d.copy().T
        b = np.hstack((a, a[:, (a.shape[1] - 2)::-1]))
        c = np.hstack((b, b[:, (b.shape[1] - 2):0:-1]))
        candela_2d_0C360 = np.hstack((c, c[:, :1]))
        cangles = np.hstack(
            (cangles, -cangles[(cangles.shape[0] - 2)::-1] + 180))
        cangles = np.hstack(
            (cangles, -cangles[(cangles.shape[0] - 2):0:-1] + 360))
        cangles = np.hstack((cangles, cangles[:1]))
        # complete  tangles:
        a = candela_2d_0C360.copy()
        b = np.vstack((a, np.zeros(a.shape)[1:, :]))
        tangles = np.hstack(
            (tangles, -tangles[(tangles.shape[0] - 2)::-1] + 180))
        candela_2d = b
    else:
        raise Exception(
            'complete_ldt_lid(): Other "Isym" than "4", not yet implemented (31/10/2018).'
        )

    LDT['map'] = {'thetas': tangles}
    LDT['map']['phis'] = cangles
    LDT['map']['values'] = candela_2d.T
    return LDT
コード例 #4
0
ファイル: plotters.py プロジェクト: husion/luxpy
def plotDL(ccts = None, cieobs =_CIEOBS, cspace = _CSPACE, axh = None, \
           show = True, force_daylight_below4000K = False, cspace_pars = {}, \
           formatstr = 'k-',  **kwargs):
    """
    Plot daylight locus.
    
    Args: 
        :ccts: 
            | None or list[float], optional
            | None defaults to [4000 K to 1e19 K] in 100 steps on a log10 scale.
        :force_daylight_below4000K: 
            | False or True, optional
            | CIE daylight phases are not defined below 4000 K. 
            | If True plot anyway.
        :axh: 
            | None or axes handle, optional
            | Determines axes to plot data in.
            | None: make new figure.
        :show: 
            | True or False, optional
            | Invoke matplotlib.pyplot.show() right after plotting
        :cieobs:
            | luxpy._CIEOBS or str, optional
            | Determines CMF set to calculate spectrum locus or other.
        :cspace:
            | luxpy._CSPACE or str, optional
            | Determines color space / chromaticity diagram to plot data in.
            | Note that data is expected to be in specified :cspace:
        :formatstr:
            | 'k-' or str, optional
            | Format str for plotting (see ?matplotlib.pyplot.plot)
        :cspace_pars:
            | {} or dict, optional
            | Dict with parameters required by color space specified in :cspace: 
              (for use with luxpy.colortf())
        :kwargs: 
            | additional keyword arguments for use with matplotlib.pyplot.
    
    Returns:
        :returns: 
            | None (:show: == True) 
            |  or 
            | handle to current axes (:show: == False)
    """
    
    if ccts is None:
        ccts = 10**np.linspace(np.log10(4000.0),np.log10(10.0**19.0),100.0)
        
    xD,yD = daylightlocus(ccts, force_daylight_below4000K = force_daylight_below4000K)
    Y = 100*np.ones(xD.shape)
    DL =  Yxy_to_xyz(np.vstack((Y, xD,yD)).T)
    DL = colortf(DL, tf = cspace, tfa0 = cspace_pars)
    Y,x,y = asplit(DL)
    
    axh = plot_color_data(x,y,axh = axh, cieobs = cieobs, cspace = cspace, show=show, formatstr=formatstr, **kwargs)    
    
    if show == False:
        return axh
コード例 #5
0
 def normalize_to_Lw(Ill, Lw, cieobs, rflM):
     xyzw = lx.spd_to_xyz(Ill, cieobs = cieobs, relative = False)
     for i in range(Ill.shape[0]-1):
         Ill[i+1] = Lw*Ill[i+1]/xyzw[i,1]
     IllM = []
     for i in range(Ill.shape[0]-1):
         IllM.append(np.vstack((Ill1[0],Ill[i+1]*rflM[1:,:])))
     IllM = np.transpose(np.array(IllM),(1,0,2))
     return Ill, IllM
コード例 #6
0
def plotceruleanline(cieobs=_CIEOBS,
                     cspace=_CSPACE,
                     axh=None,
                     formatstr='ko-',
                     cspace_pars={}):
    """
    Plot cerulean (yellow (577 nm) - blue (472 nm)) line 
    
    | Kuehni, CRA, 2014: 
    |   Table II: spectral lights.
    
    Args: 
        :axh: 
            | None or axes handle, optional
            | Determines axes to plot data in.
            | None: make new figure.
        :cieobs:
            | luxpy._CIEOBS or str, optional
            | Determines CMF set to calculate spectrum locus or other.
        :cspace:
            | luxpy._CSPACE or str, optional
            | Determines color space / chromaticity diagram to plot data in.
            | Note that data is expected to be in specified :cspace:
        :formatstr:
            | 'k-' or str, optional
            | Format str for plotting (see ?matplotlib.pyplot.plot)
        :cspace_pars:
            | {} or dict, optional
            | Dict with parameters required by color space specified in :cspace: 
            | (for use with luxpy.colortf())
        :kwargs:
            | additional keyword arguments for use with matplotlib.pyplot.
    
    Returns:
        :returns:
            | handle to cerulean line
        
    References:
        1. `Kuehni, R. G. (2014). 
        Unique hues and their stimuli—state of the art. 
        Color Research & Application, 39(3), 279–287. 
        <https://doi.org/10.1002/col.21793>`_
        (see Table II, IV)
    """
    cmf = _CMF[cieobs]['bar']
    p_y = cmf[0] == 577.0  #Kuehni, CRA 2013 (mean, table IV)
    p_b = cmf[0] == 472.0  #Kuehni, CRA 2013 (mean, table IV)
    xyz_y = cmf[1:, p_y].T
    xyz_b = cmf[1:, p_b].T
    lab = colortf(np.vstack((xyz_b, xyz_y)), tf=cspace, tfa0=cspace_pars)
    if axh is None:
        axh = plt.gca()
    hcerline = axh.plot(lab[:, 1], lab[:, 2], formatstr, label='Cerulean line')
    return hcerline
コード例 #7
0
ファイル: circadian_CS_CLa_lrc.py プロジェクト: husion/luxpy
def interpolate_efficiency_functions(wl, cs_cl_lrs):
    """
    Interpolate all spectral data in dict cs_cl_lrs to new wavelength range.
    """
    
    for key in cs_cl_lrs:
        if key[-1] == 'l': #signifies l for spectral data
            temp = np.vstack((cs_cl_lrs['WL'],cs_cl_lrs[key])) # construct [wl,S] data
            cs_cl_lrs[key] = cie_interp(temp,wl, kind = 'cmf')[1:] # interpolate and store in dict
    cs_cl_lrs['WL'] = wl # store new wavelength range
    
    return  cs_cl_lrs
コード例 #8
0
def cik_to_v(cik, xyc=None, inverse=False):
    """
    Calculate v-format ellipse descriptor from 2x2 'covariance matrix'^-1 cik 
    
    Args:
        :cik: 
            | 'Nx2x2' (covariance matrix)^-1
        :inverse:
            | If True: input is inverse of cik.
              
            
    Returns:
        :v: 
            | (Nx5) np.ndarray
            | ellipse parameters [Rmax,Rmin,xc,yc,theta]

    Notes:
        | cik is not actually the inverse covariance matrix,
        | only for a Gaussian or normal distribution!

    """
    if cik.ndim < 3:
        cik = cik[None, ...]

    if inverse == True:
        for i in range(cik.shape[0]):
            cik[i, :, :] = np.linalg.inv(cik[i, :, :])

    g11 = cik[:, 0, 0]
    g22 = cik[:, 1, 1]
    g12 = cik[:, 0, 1]

    theta = 0.5 * np.arctan2(2 * g12, (g11 - g22)) + (np.pi / 2) * (g12 < 0)
    #theta = theta2 + (np.pi/2)*(g12<0)
    #theta2 = theta
    cottheta = np.cos(theta) / np.sin(theta)  #np.cot(theta)
    cottheta[np.isinf(cottheta)] = 0

    a = 1 / np.sqrt((g22 + g12 * cottheta))
    b = 1 / np.sqrt((g11 - g12 * cottheta))

    # ensure largest ellipse axis is first (correct angle):
    c = b > a
    a[c], b[c], theta[c] = b[c], a[c], theta[c] + np.pi / 2

    v = np.vstack((a, b, np.zeros(a.shape), np.zeros(a.shape), theta)).T

    # add center coordinates:
    if xyc is not None:
        v[:, 2:4] = xyc

    return v
コード例 #9
0
def lmsb_to_xyzb(lms, fieldsize=10, out='XYZ', allow_negative_values=False):
    """
    Convert from LMS cone fundamentals to XYZ color matching functions.
    
    Args:
        :lms: 
            | ndarray with lms cone fundamentals, optional
        :fieldsize: 
            | fieldsize in degrees, optional
            | Defaults to 10°.
        :out: 
            | 'xyz' or str, optional
            | Determines output.
        :allow_negative_values:
            | False, optional
            | XYZ color matching functions should not have negative values.
            |     If False: xyz[xyz<0] = 0.
    Returns:
        :returns:
            | LMS 
            |   - LMS: ndarray with population XYZ color matching functions.    
    
    Note: 
        For intermediate field sizes (2° < fieldsize < 10°) a conversion matrix
        is calculated by linear interpolation between 
        the _INDVCMF_M_2d and _INDVCMF_M_10d matrices.
    """
    wl = lms[None, 0]  #store wavelengths
    M = get_lms_to_xyz_matrix(fieldsize=fieldsize)
    if lms.ndim > 2:
        xyz = np.vstack((wl, math.dot23(M, lms[1:, ...], keepdims=False)))
    else:
        xyz = np.vstack((wl, np.dot(M, lms[1:, ...])))
    if allow_negative_values == False:
        xyz[np.where(xyz < 0)] = 0
    return xyz
コード例 #10
0
def crowdingdistance(F):
    """
    Computes the crowding distance of a nondominated front.
    The crowding distance gives a measure of how close the individuals are
    with regard to its neighbors. The higher this value, the greater the
    spacing. This is used to promote better diversity in the population.

    Args:
       F: 
           | an m x mu ndarray with mu individuals and m objectives

    Returns:
       cdist: 
           | a m-length column vector
    """
    m, mu = F.shape  #gets the size of F

    if mu == 2:
        cdist = np.vstack((np.inf, np.inf))
        return cdist

    #[Fs, Is] = sort(F,2); #sorts the objectives by individuals
    Is = F.argsort(axis=1)
    Fs = np.sort(F, axis=1)

    # Creates the numerator
    C = Fs[:, 2:] - Fs[:, :-2]
    C = np.hstack((np.inf * np.ones((m, 1)), C, np.inf * np.ones(
        (m, 1))))  #complements with inf in the extremes

    # Indexing to permute the C matrix in the right ordering
    Aux = np.arange(m).repeat(mu).reshape(m, mu)
    ind = np.ravel_multi_index(
        (Aux.flatten(), Is.flatten()),
        (m, mu
         ))  #converts to lin. indexes # ind = sub2ind([m, mu], Aux(:), Is(:));
    C2 = C.flatten().copy()
    C2[ind] = C2.flatten()
    C = C2.reshape((m, mu))

    # Constructs the denominator
    den = np.repeat((Fs[:, -1] - Fs[:, 0])[:, None], mu, axis=1)

    # Calculates the crowding distance
    cdist = (C / den).sum(axis=0)
    cdist = cdist.flatten()  #assures a column vector
    return cdist
コード例 #11
0
def cik_to_v(cik, xyc=None, inverse=False):
    """
    Calculate v-format ellipse descriptor from 2x2 'covariance matrix'^-1 cik 
    
    Args:
        :cik: 
            '2x2xN' (covariance matrix)^-1
            
    Returns:
        :v: 
            | (Nx5) np.ndarray
            | ellipse parameters [Rmax,Rmin,xc,yc,theta]

    Notes:
        | cik is not actually the inverse covariance matrix,
        | only for a Gaussian or normal distribution!

    """
    if inverse == True:
        for i in np.arange(cik.shape[0]):
            cik[i, :, :] = np.linalg.inv(cik[i, :, :])

    g11 = cik[:, 0, 0]
    g22 = cik[:, 1, 1]
    g12 = cik[:, 0, 1]

    theta2 = 1 / 2 * np.arctan2(2 * g12, (g11 - g22))
    theta = theta2 + (np.pi / 2) * (g12 < 0)
    theta2 = theta
    cottheta = np.cos(theta) / np.sin(theta)  #np.cot(theta)
    cottheta[np.isinf(cottheta)] = 0

    a = 1 / np.sqrt((g22 + g12 * cottheta))
    b = 1 / np.sqrt((g11 - g12 * cottheta))

    v = np.vstack((a, b, np.zeros(a.shape), np.zeros(a.shape), theta)).T

    # add center coordinates:
    if xyc is not None:
        v[:, 2:4] = xyc

    return v
コード例 #12
0
ファイル: smits_mitsuba.py プロジェクト: uhqinli/luxpy
def rgb_to_spec_smits(rgb, intent='rfl', bitdepth=8, wlr=_WL3, rgb2spec=None):
    """
    Convert an array of RGB values to a spectrum using a Smits like conversion as implemented in Mitsuba.
    
    Args:
        :rgb: 
            | ndarray of list of rgb values
        :intent:
            | 'rfl' (or 'spd'), optional
            | type of requested spectrum conversion .
        :bitdepth:
            | 8, optional
            | bit depth of rgb values
        :wlr: 
            | _WL3, optional
            | desired wavelength (nm) range of spectrum.
        :rgb2spec:
            | None, optional
            | Dict with base spectra for white, cyan, magenta, yellow, blue, green and red for each intent.
            | If None: use _BASESPEC_SMITS.
        
    Returns:
        :spec: 
            | ndarray with spectrum or spectra (one for each rgb value, first row are the wavelengths)
    """
    if isinstance(rgb, list):
        rgb = np.atleast_2d(rgb)
    if rgb.max() > 1:
        rgb = rgb / (2**bitdepth - 1)
    if rgb2spec is None:
        rgb2spec = _BASESPEC_SMITS
    if not np.array_equal(rgb2spec['wlr'], getwlr(wlr)):
        rgb2spec = _convert_to_wlr(entries=copy.deepcopy(rgb2spec), wlr=wlr)
    spec = np.zeros((rgb.shape[0], rgb2spec['wlr'].shape[0]))
    for i in range(rgb.shape[0]):
        spec[i, :] = _fromLinearRGB(rgb[i, :],
                                    intent=intent,
                                    rgb2spec=rgb2spec,
                                    wlr=wlr)
    return np.vstack((rgb2spec['wlr'], spec))
コード例 #13
0
def get_poly_model(jabt, jabr, modeltype = _VF_MODEL_TYPE):
    """
    Setup base color shift model (delta_a, delta_b), 
    determine model parameters and accuracy.
    
    | Calculates a base color shift (delta) from the ref. chromaticity ar, br.
    
    Args:
        :jabt: 
            | ndarray with jab color coordinates under the test SPD.
        :jabr: 
            | ndarray with jab color coordinates under the reference SPD.
        :modeltype:
            | _VF_MODEL_TYPE or 'M6' or 'M5', optional
            | Specifies degree 5 or degree 6 polynomial model in ab-coordinates.
              (see notes below)
            
    Returns:
        :returns: 
            | (poly_model, 
            |       pmodel, 
            |       dab_model, 
            |        dab_res, 
            |        dCHoverC_res, 
            |        dab_std, 
            |        dCHoverC_std)
            |
            | :poly_model: function handle to model
            | :pmodel: ndarray with model parameters
            | :dab_model: ndarray with ab model predictions from ar, br.
            | :dab_res: ndarray with residuals between 'da,db' of samples and 
            |            'da,db' predicted by the model.
            | :dCHoverC_res: ndarray with residuals between 'dCoverC,dH' 
            |                 of samples and 'dCoverC,dH' predicted by the model.
            |     Note: dCoverC = (Ct - Cr)/Cr and dH = ht - hr 
            |         (predicted from model, see notes below)
            | :dab_std: ndarray with std of :dab_res:
            | :dCHoverC_std: ndarray with std of :dCHoverC_res: 

    Notes: 
        1. Model types:
            | poly5_model = lambda a,b,p:         p[0]*a + p[1]*b + p[2]*(a**2) + p[3]*a*b + p[4]*(b**2)
            | poly6_model = lambda a,b,p:  p[0] + p[1]*a + p[2]*b + p[3]*(a**2) + p[4]*a*b + p[5]*(b**2)
        
        2. Calculation of dCoverC and dH:
            | dCoverC = (np.cos(hr)*da + np.sin(hr)*db)/Cr
            | dHoverC = (np.cos(hr)*db - np.sin(hr)*da)/Cr    
    """
    at = jabt[...,1]
    bt = jabt[...,2]
    ar = jabr[...,1]
    br = jabr[...,2]
    
    # A. Calculate da, db:
    da = at - ar
    db = bt - br
    
    # B.1 Calculate model matrix:
    # 5-parameter model:
    M5 = np.array([[np.sum(ar*ar), np.sum(ar*br), np.sum(ar*ar**2),np.sum(ar*ar*br),np.sum(ar*br**2)],
            [np.sum(br*ar), np.sum(br*br), np.sum(br*ar**2),np.sum(br*ar*br),np.sum(br*br**2)],
            [np.sum((ar**2)*ar), np.sum((ar**2)*br), np.sum((ar**2)*ar**2),np.sum((ar**2)*ar*br),np.sum((ar**2)*br**2)],
            [np.sum(ar*br*ar), np.sum(ar*br*br), np.sum(ar*br*ar**2),np.sum(ar*br*ar*br),np.sum(ar*br*br**2)],
            [np.sum((br**2)*ar), np.sum((br**2)*br), np.sum((br**2)*ar**2),np.sum((br**2)*ar*br),np.sum((br**2)*br**2)]])
    #6-parameters model
    M6 = np.array([[ar.size,np.sum(1.0*ar), np.sum(1.0*br), np.sum(1.0*ar**2),np.sum(1.0*ar*br),np.sum(1.0*br**2)],
            [np.sum(ar*1.0),np.sum(ar*ar), np.sum(ar*br), np.sum(ar*ar**2),np.sum(ar*ar*br),np.sum(ar*br**2)],
            [np.sum(br*1.0),np.sum(br*ar), np.sum(br*br), np.sum(br*ar**2),np.sum(br*ar*br),np.sum(br*br**2)],
            [np.sum((ar**2)*1.0),np.sum((ar**2)*ar), np.sum((ar**2)*br), np.sum((ar**2)*ar**2),np.sum((ar**2)*ar*br),np.sum((ar**2)*br**2)],
            [np.sum(ar*br*1.0),np.sum(ar*br*ar), np.sum(ar*br*br), np.sum(ar*br*ar**2),np.sum(ar*br*ar*br),np.sum(ar*br*br**2)],
            [np.sum((br**2)*1.0),np.sum((br**2)*ar), np.sum((br**2)*br), np.sum((br**2)*ar**2),np.sum((br**2)*ar*br),np.sum((br**2)*br**2)]])
    
    # B.2 Define model function:
    poly5_model = lambda a,b,p: p[0]*a + p[1]*b + p[2]*(a**2) + p[3]*a*b + p[4]*(b**2)
    poly6_model = lambda a,b,p: p[0] + p[1]*a + p[2]*b + p[3]*(a**2) + p[4]*a*b + p[5]*(b**2)
    
    if modeltype == 'M5':
        M = M5
        poly_model = poly5_model
    else:
        M = M6
        poly_model = poly6_model

    M = np.linalg.inv(M)


    # C.1 Data a,b analysis output:
    if modeltype == 'M5':
        da_model_parameters = np.dot(M, np.array([np.sum(da*ar), np.sum(da*br), np.sum(da*ar**2),np.sum(da*ar*br),np.sum(da*br**2)]))
        db_model_parameters = np.dot(M, np.array([np.sum(db*ar), np.sum(db*br), np.sum(db*ar**2),np.sum(db*ar*br),np.sum(db*br**2)]))
    else:
        da_model_parameters = np.dot(M, np.array([np.sum(da*1.0),np.sum(da*ar), np.sum(da*br), np.sum(da*ar**2),np.sum(da*ar*br),np.sum(da*br**2)]))
        db_model_parameters = np.dot(M, np.array([np.sum(db*1.0),np.sum(db*ar), np.sum(db*br), np.sum(db*ar**2),np.sum(db*ar*br),np.sum(db*br**2)]))
    pmodel = np.vstack((da_model_parameters,db_model_parameters))

    # D.1 Calculate model da, db:
    da_model = poly_model(ar,br,pmodel[0])
    db_model = poly_model(ar,br,pmodel[1])
    dab_model = np.hstack((da_model,db_model))

    # D.2 Calculate residuals for da & db:
    da_res = da - da_model
    db_res = db - db_model
    dab_res = np.hstack((da_res,db_res))
    dab_std = np.vstack((np.std(da_res,axis=0),np.std(db_res,axis=0)))

    # E Calculate href, Cref:
    href = np.arctan2(br,ar)
    Cref = (ar**2 + br**2)**0.5
    
    # F Calculate dC/C, dH/C for data and model and calculate residuals:
    dCoverC = (np.cos(href)*da + np.sin(href)*db)/Cref
    dHoverC = (np.cos(href)*db - np.sin(href)*da)/Cref
    dCoverC_model = (np.cos(href)*da_model + np.sin(href)*db_model)/Cref
    dHoverC_model = (np.cos(href)*db_model - np.sin(href)*da_model)/Cref
    dCoverC_res = dCoverC - dCoverC_model
    dHoverC_res = dHoverC - dHoverC_model
    dCHoverC_std = np.vstack((np.std(dCoverC_res,axis = 0),np.std(dHoverC_res,axis = 0)))
    
    dCHoverC_res = np.hstack((href,dCoverC_res,dHoverC_res))

    return poly_model, pmodel, dab_model, dab_res, dCHoverC_res, dab_std, dCHoverC_std
コード例 #14
0
def VF_colorshift_model(S, cri_type = _VF_CRI_DEFAULT, model_type = _VF_MODEL_TYPE, \
                        cspace = _VF_CSPACE, sampleset = None, pool = False, \
                        pcolorshift = {'href': np.arange(np.pi/10,2*np.pi,2*np.pi/10),'Cref' : _VF_MAXR, 'sig' : _VF_SIG}, \
                        vfcolor = 'k',verbosity = 0):
    """
    Applies full vector field model calculations to spectral data.
    
    Args:
        :S: 
            | nump.ndarray with spectral data.
        :cri_type:
            | _VF_CRI_DEFAULT or str or dict, optional
            | Specifies type of color fidelity model to use. 
            | Controls choice of ref. ill., sample set, averaging, scaling, etc.
            | See luxpy.cri.spd_to_cri for more info.
        :modeltype:
            | _VF_MODEL_TYPE or 'M6' or 'M5', optional
            | Specifies degree 5 or degree 6 polynomial model in ab-coordinates.
        :cspace:
            | _VF_CSPACE or dict, optional
            | Specifies color space. See _VF_CSPACE_EXAMPLE for example structure.
        :sampleset:
            | None or str or ndarray, optional
            | Sampleset to be used when calculating vector field model.
        :pool: 
            | False, optional
            | If :S: contains multiple spectra, True pools all jab data before 
              modeling the vector field, while False models a different field 
              for each spectrum.
        :pcolorshift: 
            | default dict (see below) or user defined dict, optional
            | Dict containing the specification input 
              for apply_poly_model_at_hue_x().
            | Default dict = {'href': np.arange(np.pi/10,2*np.pi,2*np.pi/10),
            |                 'Cref' : _VF_MAXR, 
            |                 'sig' : _VF_SIG, 
            |                 'labels' : '#'} 
            | The polynomial models of degree 5 and 6 can be fully specified or 
              summarized by the model parameters themselved OR by calculating the
              dCoverC and dH at resp. 5 and 6 hues.
        :vfcolor:
            | 'k', optional
            | For plotting the vector fields.
        :verbosity: 
            | 0, optional
            | Report warnings or not.
            
    Returns:
        :returns: 
            | list[dict] (each list element refers to a different test SPD)
            | with the following keys:
            |   - 'Source': dict with ndarrays of the S, cct and duv of source spd.
            |   - 'metrics': dict with ndarrays for:
            |         * Rf (color fidelity: base + metameric shift)
            |         * Rt (metameric uncertainty index) 
            |         * Rfi (specific color fidelity indices)
            |         * Rti (specific metameric uncertainty indices)
            |         * cri_type (str with cri_type)
            |   - 'Jab': dict with with ndarrays for Jabt, Jabr, DEi
            |   - 'dC/C_dH_x_sig' : 
            |           np.vstack((dCoverC_x,dCoverC_x_sig,dH_x,dH_x_sig)).T
            |           See get_poly_model() for more info.
            |   - 'fielddata': dict with dicts containing data on the calculated 
            |      vector-field and circle-fields: 
            |        * 'vectorfield' : {'axt': vfaxt, 'bxt' : vfbxt, 
            |                           'axr' : vfaxr, 'bxr' : vfbxr},
            |        * 'circlefield' : {'axt': cfaxt, 'bxt' : cfbxt, 
            |                           'axr' : cfaxr, 'bxr' : cfbxr}},
            |   - 'modeldata' : dict with model info:
            |                {'pmodel': pmodel, 
            |                'pcolorshift' : pcolorshift, 
            |                  'dab_model' : dab_model, 
            |                  'dab_res' : dab_res,
            |                  'dab_std' : dab_std,
            |                  'modeltype' : modeltype, 
            |                  'fmodel' : poly_model,
            |                  'Jabtm' : Jabtm, 
            |                  'Jabrm' : Jabrm, 
            |                  'DEim' : DEim},
            |   - 'vshifts' :dict with various vector shifts:
            |        * 'Jabshiftvector_r_to_t' : ndarray with difference vectors
            |                                    between jabt and jabr.
            |        * 'vshift_ab_s' : vshift_ab_s: ab-shift vectors of samples 
            |        * 'vshift_ab_s_vf' : vshift_ab_s_vf: ab-shift vectors of 
            |                             VF model predictions of samples.
            |        * 'vshift_ab_vf' : vshift_ab_vf: ab-shift vectors of VF 
            |                            model predictions of vector field grid.
    """
    
    if type(cri_type) == str:
        cri_type_str = cri_type
    else:
        cri_type_str = None
    
    # Calculate Rf, Rfi and Jabr, Jabt:
    Rf, Rfi, Jabt, Jabr,cct,duv,cri_type  = spd_to_cri(S, cri_type= cri_type,out='Rf,Rfi,jabt,jabr,cct,duv,cri_type', sampleset=sampleset)
    
    # In case of multiple source SPDs, pool:
    if (len(Jabr.shape) == 3) & (Jabr.shape[1]>1) & (pool == True):
        #Nsamples = Jabr.shape[0]
        Jabr = np.transpose(Jabr,(1,0,2)) # set lamps on first dimension
        Jabt = np.transpose(Jabt,(1,0,2))
        Jabr = Jabr.reshape(Jabr.shape[0]*Jabr.shape[1],3) # put all lamp data one after the other
        Jabt = Jabt.reshape(Jabt.shape[0]*Jabt.shape[1],3)
        Jabt = Jabt[:,None,:] # add dim = 1
        Jabr = Jabr[:,None,:]
    

    out = [{} for _ in range(Jabr.shape[1])] #initialize empty list of dicts
    if pool == False:
        N = Jabr.shape[1]
    else:
        N = 1
    for i in range(N):
        
        Jabr_i = Jabr[:,i,:].copy()
        Jabr_i = Jabr_i[:,None,:]
        Jabt_i = Jabt[:,i,:].copy()
        Jabt_i = Jabt_i[:,None,:]

        DEi = np.sqrt((Jabr_i[...,0] - Jabt_i[...,0])**2 + (Jabr_i[...,1] - Jabt_i[...,1])**2 + (Jabr_i[...,2] - Jabt_i[...,2])**2)

        # Determine polynomial model:
        poly_model, pmodel, dab_model, dab_res, dCHoverC_res, dab_std, dCHoverC_std = get_poly_model(Jabt_i, Jabr_i, modeltype = _VF_MODEL_TYPE)
        
        # Apply model at fixed hues:
        href = pcolorshift['href']
        Cref = pcolorshift['Cref']
        sig = pcolorshift['sig']
        dCoverC_x, dCoverC_x_sig, dH_x, dH_x_sig = apply_poly_model_at_hue_x(poly_model, pmodel, dCHoverC_res, hx = href, Cxr = Cref, sig = sig)
        
        # Calculate deshifted a,b values on original samples:
        Jt = Jabt_i[...,0].copy()
        at = Jabt_i[...,1].copy()
        bt = Jabt_i[...,2].copy()
        Jr = Jabr_i[...,0].copy()
        ar = Jabr_i[...,1].copy()
        br = Jabr_i[...,2].copy()
        ar = ar + dab_model[:,0:1] # deshift reference to model prediction
        br = br + dab_model[:,1:2] # deshift reference to model prediction
        
        Jabtm = np.hstack((Jt,at,bt))
        Jabrm = np.hstack((Jr,ar,br))
        
        # calculate color differences between test and deshifted ref:
#        DEim = np.sqrt((Jr - Jt)**2 + (at - ar)**2 + (bt - br)**2)
        DEim = np.sqrt(0*(Jr - Jt)**2 + (at - ar)**2 + (bt - br)**2) # J is not used

        # Apply scaling function to convert DEim to Rti:
        scale_factor = cri_type['scale']['cfactor']
        scale_fcn = cri_type['scale']['fcn']
        avg = cri_type['avg']  
        Rfi_deshifted = scale_fcn(DEim,scale_factor)
        Rf_deshifted = scale_fcn(avg(DEim,axis = 0),scale_factor)
        
        rms = lambda x: np.sqrt(np.sum(x**2,axis=0)/x.shape[0])
        Rf_deshifted_rms = scale_fcn(rms(DEim),scale_factor)
    
        # Generate vector field:
        vfaxt,vfbxt,vfaxr,vfbxr = generate_vector_field(poly_model, pmodel,axr = np.arange(-_VF_MAXR,_VF_MAXR+_VF_DELTAR,_VF_DELTAR), bxr = np.arange(-_VF_MAXR,_VF_MAXR+_VF_DELTAR,_VF_DELTAR), limit_grid_radius = _VF_MAXR,color = 0)
        vfaxt,vfbxt,vfaxr,vfbxr = generate_vector_field(poly_model, pmodel,axr = np.arange(-_VF_MAXR,_VF_MAXR+_VF_DELTAR,_VF_DELTAR), bxr = np.arange(-_VF_MAXR,_VF_MAXR+_VF_DELTAR,_VF_DELTAR), limit_grid_radius = _VF_MAXR,color = 0)

        # Calculate ab-shift vectors of samples and VF model predictions:
        vshift_ab_s = calculate_shiftvectors(Jabt_i, Jabr_i, average = False, vtype = 'ab')[:,0,0:3]
        vshift_ab_s_vf = calculate_shiftvectors(Jabtm,Jabrm, average = False, vtype = 'ab')

        # Calculate ab-shift vectors using vector field model:
        Jabt_vf = np.hstack((np.zeros((vfaxt.shape[0],1)), vfaxt, vfbxt))   
        Jabr_vf = np.hstack((np.zeros((vfaxr.shape[0],1)), vfaxr, vfbxr))   
        vshift_ab_vf = calculate_shiftvectors(Jabt_vf,Jabr_vf, average = False, vtype = 'ab')

        # Generate circle field:
        x,y = plotcircle(radii = np.arange(0,_VF_MAXR+_VF_DELTAR,10), angles = np.arange(0,359,1), out = 'x,y')
        cfaxt,cfbxt,cfaxr,cfbxr = generate_vector_field(poly_model, pmodel,make_grid = False,axr = x[:,None], bxr = y[:,None], limit_grid_radius = _VF_MAXR,color = 0)

        out[i] = {'Source' : {'S' : S, 'cct' : cct[i] , 'duv': duv[i]},
               'metrics' : {'Rf':Rf[:,i], 'Rt': Rf_deshifted, 'Rt_rms' : Rf_deshifted_rms, 'Rfi':Rfi[:,i], 'Rti': Rfi_deshifted, 'cri_type' : cri_type_str},
               'Jab' : {'Jabt' : Jabt_i, 'Jabr' : Jabr_i, 'DEi' : DEi},
               'dC/C_dH_x_sig' : np.vstack((dCoverC_x,dCoverC_x_sig,dH_x,dH_x_sig)).T,
               'fielddata': {'vectorfield' : {'axt': vfaxt, 'bxt' : vfbxt, 'axr' : vfaxr, 'bxr' : vfbxr},
                             'circlefield' : {'axt': cfaxt, 'bxt' : cfbxt, 'axr' : cfaxr, 'bxr' : cfbxr}},
               'modeldata' : {'pmodel': pmodel, 'pcolorshift' : pcolorshift, 
                              'dab_model' : dab_model, 'dab_res' : dab_res,'dab_std' : dab_std,
                              'model_type' : model_type, 'fmodel' : poly_model,
                              'Jabtm' : Jabtm, 'Jabrm' : Jabrm, 'DEim' : DEim},
               'vshifts' : {'Jabshiftvector_r_to_t' : np.hstack((Jt-Jr,at-ar,bt-br)),
                            'vshift_ab_s' : vshift_ab_s,
                            'vshift_ab_s_vf' : vshift_ab_s_vf,
                            'vshift_ab_vf' : vshift_ab_vf}}
     
    return out
コード例 #15
0
def generate_grid(jab_ranges = None, out = 'grid', \
                  ax = np.arange(-_VF_MAXR,_VF_MAXR+_VF_DELTAR,_VF_DELTAR),\
                  bx = np.arange(-_VF_MAXR,_VF_MAXR+_VF_DELTAR,_VF_DELTAR), \
                  jx = None, limit_grid_radius = 0):
    """
    Generate a grid of color coordinates.
    
    Args:
        :out:
            | 'grid' or 'vectors', optional
            |   - 'grid': outputs a single 2d numpy.nd-vector with the grid coordinates
            |   - 'vector': outputs each dimension seperately.
        :jab_ranges:
            | None or ndarray, optional
            | Specifies the pixelization of color space.
              (ndarray.shape = (3,3), with  first axis: J,a,b, and second 
              axis: min, max, delta)
        :ax:
            | default ndarray or user defined ndarray, optional
            | default = np.arange(-_VF_MAXR,_VF_MAXR+_VF_DELTAR,_VF_DELTAR) 
        :bx:
            | default ndarray or user defined ndarray, optional
            | default = np.arange(-_VF_MAXR,_VF_MAXR+_VF_DELTAR,_VF_DELTAR) 
        :jx:
            | None, optional
            | Note that not-None :jab_ranges: override :ax:, :bx: and :jx input.
        :limit_grid_radius:
            | 0, optional
            | A value of zeros keeps grid as specified  by axr,bxr.
            | A value > 0 only keeps (a,b) coordinates within :limit_grid_radius:
            
    Returns:
        :returns: 
            | single ndarray with ax,bx [,jx] 
            |  or
            | seperate ndarrays for each dimension specified.
    """
    # generate grid from jab_ranges array input, otherwise use ax, bx, jx input:
    if jab_ranges is not None:
        if jab_ranges.shape[0] == 3:
            jx = np.arange(jab_ranges[0][0],jab_ranges[0][1],jab_ranges[0][2])
            ax = np.arange(jab_ranges[1][0],jab_ranges[1][1],jab_ranges[1][2])
            bx = np.arange(jab_ranges[2][0],jab_ranges[2][1],jab_ranges[2][2])
        else:
            jx = None
            ax = np.arange(jab_ranges[0][0],jab_ranges[0][1],jab_ranges[0][2])
            bx = np.arange(jab_ranges[1][0],jab_ranges[1][1],jab_ranges[1][2])
   
    # Generate grid from (jx), ax, bx:
    Ax,Bx = np.meshgrid(ax,bx)
    grid = np.dstack((Ax,Bx))
    grid = np.reshape(grid,(np.array(grid.shape[:-1]).prod(),grid.ndim-1))
    if jx is not None:
        for i,v in enumerate(jx):
            gridi = np.hstack((np.ones((grid.shape[0],1))*v,grid))
            if i == 0:
                gridwithJ = gridi
            else:
                gridwithJ = np.vstack((gridwithJ,gridi))
        grid = gridwithJ
    
    if jx is None:
        ax = grid[:,0:1]
        bx = grid[:,1:2]
    else:
        jx = grid[:,0:1]
        ax = grid[:,1:2]
        bx = grid[:,2:3] 
    
    if limit_grid_radius > 0:# limit radius of grid:
        Cr = (ax**2+bx**2)**0.5
        ax = ax[Cr<=limit_grid_radius,None]
        bx = bx[Cr<=limit_grid_radius,None]
        if jx is not None:
            jx = jx[Cr<=limit_grid_radius,None]
    
    # create output:
    if out == 'grid':
        if jx is None:
            return np.hstack((ax,bx))
        else:
            return np.hstack((jx,ax,bx))
    else:
        if jx is None:
            return ax, bx
        else:
            return jx, ax, bx
コード例 #16
0
def xyz_to_rfl(xyz, rfl = None, out = 'rfl_est', \
                 refspd = None, D = None, cieobs = _CIEOBS, \
                 cspace = 'ipt', cspace_tf = {},\
                 k_neighbours = 4, verbosity = 0):
    """
    Approximate spectral reflectance of xyz based on k nearest neighbour 
    interpolation of samples from a standard reflectance set.
    
    Args:
        :xyz: 
            | ndarray with tristimulus values of target points.
        :rfl: 
            | ndarray, optional
            | Reflectance set for color coordinate to rfl mapping.
        :out: 
            | 'rfl_est' or str, optional
        :refspd: 
            | None, optional
            | Refer ence spectrum for color coordinate to rfl mapping.
            | None defaults to D65.
        :cieobs:
            | _CIEOBS, optional
            | CMF set used for calculation of xyz from spectral data.
        :cspace:
            | 'ipt',  optional
            | Color space for color coordinate to rfl mapping.
        :cspace_tf:
            | {}, optional
            | Dict with parameters for xyz_to_... and ..._to_xyz transform.
        :k_neighbours:
            | 4 or int, optional
            | Number of nearest neighbours for reflectance spectrum interpolation.
            | Neighbours are found using scipy.cKDTree
        :verbosity:
            | 0, optional
            | If > 0: make a plot of the color coordinates of original and 
              rendered image pixels.

    Returns:
        :returns: 
            | :rfl_est:
            | ndarrays with estimated reflectance spectra.
    """

    # get rfl set:
    if rfl is None:  # use IESTM30['4880'] set
        rfl = _CRI_RFL['ies-tm30']['4880']['5nm']

    # get Ref spd:
    if refspd is None:
        refspd = _CIE_ILLUMINANTS['D65'].copy()

    # Calculate lab-type coordinates of standard rfl set under refspd:
    xyz_rr, xyz_wr = spd_to_xyz(refspd,
                                relative=True,
                                rfl=rfl,
                                cieobs=cieobs,
                                out=2)
    cspace_tf_copy = cspace_tf.copy()
    cspace_tf_copy['xyzw'] = xyz_wr  # put correct white point in param. dict
    lab_rr = colortf(xyz_rr,
                     tf=cspace,
                     fwtf=cspace_tf_copy,
                     bwtf=cspace_tf_copy)[:, 0, :]

    # Convert xyz to lab-type values under refspd:
    lab = colortf(xyz, tf=cspace, fwtf=cspace_tf_copy, bwtf=cspace_tf_copy)

    # Find rfl (cfr. lab_rr) from rfl set that results in 'near' metameric
    # color coordinates for each value in lab_ur (i.e. smallest DE):
    # Construct cKDTree:
    tree = cKDTree(lab_rr, copy_data=True)

    # Interpolate rfls using k nearest neightbours and inverse distance weigthing:
    d, inds = tree.query(lab, k=k_neighbours)
    if k_neighbours > 1:
        w = (1.0 / d**2)[:, :, None]  # inverse distance weigthing
        rfl_est = np.sum(w * rfl[inds + 1, :], axis=1) / np.sum(w, axis=1)
    else:
        rfl_est = rfl[inds + 1, :].copy()
    rfl_est = np.vstack((rfl[0], rfl_est))

    if (verbosity > 0) | ('xyz_est' in out.split(',')) | (
            'lab_est' in out.split(',')) | ('DEi_ab' in out.split(',')) | (
                'DEa_ab' in out.split(',')):
        xyz_est, _ = spd_to_xyz(refspd,
                                rfl=rfl_est,
                                relative=True,
                                cieobs=cieobs,
                                out=2)
        cspace_tf_copy = cspace_tf.copy()
        cspace_tf_copy[
            'xyzw'] = xyz_wr  # put correct white point in param. dict
        lab_est = colortf(xyz_est, tf=cspace, fwtf=cspace_tf_copy)[:, 0, :]
        DEi_ab = np.sqrt(((lab_est[:, 1:3] - lab[:, 1:3])**2).sum(axis=1))
        DEa_ab = DEi_ab.mean()

    if verbosity > 0:
        ax = plot_color_data(lab[...,1], lab[...,2], z = lab[...,0], \
                        show = False, cieobs = cieobs, cspace = cspace, \
                        formatstr = 'ro', label = 'Original')
        plot_color_data(lab_est[...,1], lab_est[...,2], z = lab_est[...,0], \
                        show = True, axh = ax, cieobs = cieobs, cspace = cspace, \
                        formatstr = 'bd', label = 'Rendered')

    if out == 'rfl_est':
        return rfl_est
    elif out == 'rfl_est,xyz_est':
        return rfl_est, xyz_est
    else:
        return eval(out)
コード例 #17
0
def render_image(img = None, spd = None, rfl = None, out = 'img_hyp', \
                 refspd = None, D = None, cieobs = _CIEOBS, \
                 cspace = 'ipt', cspace_tf = {},\
                 k_neighbours = 4, show = True,
                 verbosity = 0, show_ref_img = True,\
                 stack_test_ref = 12,\
                 write_to_file = None):
    """
    Render image under specified light source spd.
    
    Args:
        :img: 
            | None or str or ndarray with uint8 rgb image.
            | None load a default image.
        :spd: 
            | ndarray, optional
            | Light source spectrum for rendering
        :rfl: 
            | ndarray, optional
            | Reflectance set for color coordinate to rfl mapping.
        :out: 
            | 'img_hyp' or str, optional
            |  (other option: 'img_ren': rendered image under :spd:)
        :refspd:
            | None, optional
            | Reference spectrum for color coordinate to rfl mapping.
            | None defaults to D65 (srgb has a D65 white point)
        :D: 
            | None, optional
            | Degree of (von Kries) adaptation from spd to refspd. 
        :cieobs:
            | _CIEOBS, optional
            | CMF set for calculation of xyz from spectral data.
        :cspace:
            | 'ipt',  optional
            | Color space for color coordinate to rfl mapping.
        :cspace_tf:
            | {}, optional
            | Dict with parameters for xyz_to_cspace and cspace_to_xyz transform.
        :k_neighbours:
            | 4 or int, optional
            | Number of nearest neighbours for reflectance spectrum interpolation.
            | Neighbours are found using scipy.cKDTree
        :show: 
            | True, optional
            |  Show images.
        :verbosity:
            | 0, optional
            | If > 0: make a plot of the color coordinates of original and 
              rendered image pixels.
        :show_ref_img:
            | True, optional
            | True: shows rendered image under reference spd. False: shows
              original image.
        :write_to_file:
            | None, optional
            | None: do nothing, else: write to filename(+path) in :write_to_file:
        :stack_test_ref: 
            | 12, optional
            |   - 12: left (test), right (ref) format for show and imwrite
            |   - 21: top (test), bottom (ref)
            |   - 1: only show/write test
            |   - 2: only show/write ref
            |   - 0: show both, write test

    Returns:
        :returns: 
            | img_hyp, img_ren, 
            | ndarrays with hyperspectral image and rendered images 
    """

    # Get image:
    #imread = lambda x: plt.imread(x) #matplotlib.pyplot

    if img is not None:
        if isinstance(img, str):
            img = plt.imread(img)  # use matplotlib.pyplot's imread
    else:
        img = plt.imread(_HYPSPCIM_DEFAULT_IMAGE)

    # Convert to 2D format:
    rgb = img.reshape(img.shape[0] * img.shape[1], 3) * 1.0  # *1.0: make float
    rgb[rgb == 0] = _EPS  # avoid division by zero for pure blacks.

    # Get unique rgb values and positions:
    rgb_u, rgb_indices = np.unique(rgb, return_inverse=True, axis=0)

    # get Ref spd:
    if refspd is None:
        refspd = _CIE_ILLUMINANTS['D65'].copy()

    # Convert rgb_u to xyz and lab-type values under assumed refspd:
    xyz_wr = spd_to_xyz(refspd, cieobs=cieobs, relative=True)
    xyz_ur = colortf(rgb_u, tf='srgb>xyz')

    # Estimate rfl's for xyz_ur:
    rfl_est, xyzri = xyz_to_rfl(xyz_ur, rfl = rfl, out = 'rfl_est,xyz_est', \
                 refspd = refspd, D = D, cieobs = cieobs, \
                 cspace = cspace, cspace_tf = cspace_tf,\
                 k_neighbours = k_neighbours, verbosity = verbosity)

    # Get default test spd if none supplied:
    if spd is None:
        spd = _CIE_ILLUMINANTS['F4']

    # calculate xyz values under test spd:
    xyzti, xyztw = spd_to_xyz(spd, rfl=rfl_est, cieobs=cieobs, out=2)

    # Chromatic adaptation from test spd to refspd:
    if D is not None:
        xyzti = cat.apply(xyzti, xyzw1=xyztw, xyzw2=xyz_wr, D=D)

    # Convert xyzti under test spd to srgb:
    rgbti = colortf(xyzti, tf='srgb') / 255

    # Reconstruct original locations for rendered image rgbs:
    img_ren = rgbti[rgb_indices]
    img_ren.shape = img.shape  # reshape back to 3D size of original

    # For output:
    if show_ref_img == True:
        rgb_ref = colortf(xyzri, tf='srgb') / 255
        img_ref = rgb_ref[rgb_indices]
        img_ref.shape = img.shape  # reshape back to 3D size of original
        img_str = 'Rendered (under ref. spd)'
        img = img_ref
    else:
        img_str = 'Original'
        img = img / 255

    if (stack_test_ref > 0) | show == True:
        if stack_test_ref == 21:
            img_original_rendered = np.vstack(
                (img_ren, np.ones((4, img.shape[1], 3)), img))
            img_original_rendered_str = 'Rendered (under test spd)\n ' + img_str
        elif stack_test_ref == 12:
            img_original_rendered = np.hstack(
                (img_ren, np.ones((img.shape[0], 4, 3)), img))
            img_original_rendered_str = 'Rendered (under test spd) | ' + img_str
        elif stack_test_ref == 1:
            img_original_rendered = img_ren
            img_original_rendered_str = 'Rendered (under test spd)'
        elif stack_test_ref == 2:
            img_original_rendered = img
            img_original_rendered_str = img_str
        elif stack_test_ref == 0:
            img_original_rendered = img_ren
            img_original_rendered_str = 'Rendered (under test spd)'

    if write_to_file is not None:
        # Convert from RGB to BGR formatand write:
        #print('Writing rendering results to image file: {}'.format(write_to_file))
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            imsave(write_to_file, img_original_rendered)

    if show == True:
        # show images using pyplot.show():
        plt.figure()
        plt.imshow(img_original_rendered)
        plt.title(img_original_rendered_str)
        plt.gca().get_xaxis().set_ticklabels([])
        plt.gca().get_yaxis().set_ticklabels([])

        if stack_test_ref == 0:
            plt.figure()
            plt.imshow(img_str)
            plt.title(img_str)
            plt.axis('off')

    if 'img_hyp' in out.split(','):
        # Create hyper_spectral image:
        rfl_image_2D = rfl_est[
            rgb_indices +
            1, :]  # create array with all rfls required for each pixel
        img_hyp = rfl_image_2D.reshape(img.shape[0], img.shape[1],
                                       rfl_image_2D.shape[1])

    # Setup output:
    if out == 'img_hyp':
        return img_hyp
    elif out == 'img_ren':
        return img_ren
    else:
        return eval(out)
コード例 #18
0
def Ydlep_to_xyz(Ydlep,
                 cieobs=_CIEOBS,
                 xyzw=_COLORTF_DEFAULT_WHITE_POINT,
                 flip_axes=False,
                 **kwargs):
    """
    Convert Y, dominant (complementary) wavelength and excitation purity to XYZ
    tristimulus values.

    Args:
        :Ydlep: 
            | ndarray with Y, dominant (complementary) wavelength
              and excitation purity
        :xyzw: 
            | None or narray with tristimulus values of a single (!) native white point, optional
            | None defaults to xyz of CIE D65 using the :cieobs: observer.
        :cieobs:
            | luxpy._CIEOBS, optional
            | CMF set to use when calculating spectrum locus coordinates.
        :flip_axes:
            | False, optional
            | If True: flip axis 0 and axis 1 in Ydelep to increase speed of loop in function.
            |          (single xyzw with is not flipped!)
    Returns:
        :xyz: 
            | ndarray with tristimulus values
    """

    Ydlep3 = np3d(Ydlep).copy().astype(np.float)

    # flip axis so that longest dim is on first axis  (save time in looping):
    if (Ydlep3.shape[0] < Ydlep3.shape[1]) & (flip_axes == True):
        axes12flipped = True
        Ydlep3 = Ydlep3.transpose((1, 0, 2))
    else:
        axes12flipped = False

    # convert xyzw to Yxyw:
    Yxyw = xyz_to_Yxy(xyzw)
    Yxywo = Yxyw.copy()

    # get spectrum locus Y,x,y and wavelengths:
    SL = _CMF[cieobs]['bar']
    wlsl = SL[0, None].T
    Yxysl = xyz_to_Yxy(SL[1:4].T)[:, None]

    # center on xyzw:
    Yxysl = Yxysl - Yxyw
    Yxyw = Yxyw - Yxyw

    #split:
    Y, dom, pur = asplit(Ydlep3)
    Yw, xw, yw = asplit(Yxyw)
    Ywo, xwo, ywo = asplit(Yxywo)
    Ysl, xsl, ysl = asplit(Yxysl)

    # loop over longest dim:
    x = np.empty(Y.shape)
    y = np.empty(Y.shape)
    for i in range(Ydlep3.shape[1]):

        # find closest wl's to dom:
        #wlslb,wlib = meshblock(wlsl,np.abs(dom[i,:])) #abs because dom<0--> complemtary wl
        wlib, wlslb = np.meshgrid(np.abs(dom[:, i]), wlsl)

        dwl = np.abs(wlslb - wlib)
        q1 = dwl.argmin(axis=0)  # index of closest wl
        dwl[q1] = 10000.0
        q2 = dwl.argmin(axis=0)  # index of second closest wl

        # calculate x,y of dom:
        x_dom_wl = xsl[q1, 0] + (xsl[q2, 0] - xsl[q1, 0]) * (
            np.abs(dom[:, i]) - wlsl[q1, 0]) / (wlsl[q2, 0] - wlsl[q1, 0]
                                                )  # calculate x of dom. wl
        y_dom_wl = ysl[q1, 0] + (ysl[q2, 0] - ysl[q1, 0]) * (
            np.abs(dom[:, i]) - wlsl[q1, 0]) / (wlsl[q2, 0] - wlsl[q1, 0]
                                                )  # calculate y of dom. wl

        # calculate x,y of test:
        d_wl = (x_dom_wl**2.0 +
                y_dom_wl**2.0)**0.5  # distance from white point to dom
        d = pur[:, i] * d_wl
        hdom = math.positive_arctan(x_dom_wl, y_dom_wl, htype='deg')
        x[:, i] = d * np.cos(hdom * np.pi / 180.0)
        y[:, i] = d * np.sin(hdom * np.pi / 180.0)

        # complementary:
        pc = np.where(dom[:, i] < 0.0)
        hdom[pc] = hdom[pc] - np.sign(dom[:, i][pc] -
                                      180.0) * 180.0  # get positive hue angle

        # calculate intersection of line through white point and test point and purple line:
        xy = np.vstack((x_dom_wl, y_dom_wl)).T
        xyw = np.vstack((xw, yw)).T
        xypl1 = np.vstack((xsl[0, None], ysl[0, None])).T
        xypl2 = np.vstack((xsl[-1, None], ysl[-1, None])).T
        da = (xy - xyw)
        db = (xypl2 - xypl1)
        dp = (xyw - xypl1)
        T = np.array([[0.0, -1.0], [1.0, 0.0]])
        dap = np.dot(da, T)
        denom = np.sum(dap * db, axis=1, keepdims=True)
        num = np.sum(dap * dp, axis=1, keepdims=True)
        xy_linecross = (num / denom) * db + xypl1
        d_linecross = np.atleast_2d(
            (xy_linecross[:, 0]**2.0 + xy_linecross[:, 1]**2.0)**0.5).T[:, 0]
        x[:, i][pc] = pur[:, i][pc] * d_linecross[pc] * np.cos(
            hdom[pc] * np.pi / 180)
        y[:, i][pc] = pur[:, i][pc] * d_linecross[pc] * np.sin(
            hdom[pc] * np.pi / 180)
    Yxy = np.dstack((Ydlep3[:, :, 0], x + xwo, y + ywo))
    if axes12flipped == True:
        Yxy = Yxy.transpose((1, 0, 2))
    else:
        Yxy = Yxy.transpose((0, 1, 2))
    return Yxy_to_xyz(Yxy).reshape(Ydlep.shape)
コード例 #19
0
def cie2006cmfsEx(age = 32,fieldsize = 10, wl = None,\
                  var_od_lens = 0, var_od_macula = 0, \
                  var_od_L = 0, var_od_M = 0, var_od_S = 0,\
                  var_shft_L = 0, var_shft_M = 0, var_shft_S = 0,\
                  out = 'LMS', allow_negative_values = False):
    """
    Generate Individual Observer CMFs (cone fundamentals) 
    based on CIE2006 cone fundamentals and published literature 
    on observer variability in color matching and in physiological parameters.
    
    Args:
        :age: 
            | 32 or float or int, optional
            | Observer age
        :fieldsize:
            | 10, optional
            | Field size of stimulus in degrees (between 2° and 10°).
        :wl: 
            | None, optional
            | Interpolation/extraplation of :LMS: output to specified wavelengths.
            | None: output original _WL = np.array([390,780,5])
        :var_od_lens:
            | 0, optional
            | Std Dev. in peak optical density [%] of lens.
        :var_od_macula:
            | 0, optional
            | Std Dev. in peak optical density [%] of macula.
        :var_od_L:
            | 0, optional
            | Std Dev. in peak optical density [%] of L-cone.
        :var_od_M:
            | 0, optional
            | Std Dev. in peak optical density [%] of M-cone.
        :var_od_S:
            | 0, optional
            | Std Dev. in peak optical density [%] of S-cone.
        :var_shft_L:
            | 0, optional
            | Std Dev. in peak wavelength shift [nm] of L-cone. 
        :var_shft_L:
            | 0, optional
            | Std Dev. in peak wavelength shift [nm] of M-cone.  
        :var_shft_S:
            | 0, optional
            | Std Dev. in peak wavelength shift [nm] of S-cone. 
        :out: 
            | 'LMS' or , optional
            | Determines output.
        :allow_negative_values:
            | False, optional
            | Cone fundamentals or color matching functions 
              should not have negative values.
            |     If False: X[X<0] = 0.
            
    Returns:
        :returns: 
            | - 'LMS' : ndarray with individual observer area-normalized 
            |           cone fundamentals. Wavelength have been added.
                
            | [- 'trans_lens': ndarray with lens transmission 
            |      (no wavelengths added, no interpolation)
            |  - 'trans_macula': ndarray with macula transmission 
            |      (no wavelengths added, no interpolation)
            |  - 'sens_photopig' : ndarray with photopigment sens. 
            |      (no wavelengths added, no interpolation)]
            
    References:
         1. `Asano Y, Fairchild MD, and Blondé L (2016). 
         Individual Colorimetric Observer Model. 
         PLoS One 11, 1–19. 
         <http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145671>`_
        
         2. `Asano Y, Fairchild MD, Blondé L, and Morvan P (2016). 
         Color matching experiment for highlighting interobserver variability. 
         Color Res. Appl. 41, 530–539. 
         <https://onlinelibrary.wiley.com/doi/abs/10.1002/col.21975>`_
         
         3. `CIE, and CIE (2006). 
         Fundamental Chromaticity Diagram with Physiological Axes - Part I 
         (Vienna: CIE). 
         <http://www.cie.co.at/publications/fundamental-chromaticity-diagram-physiological-axes-part-1>`_ 
         
         4. `Asano's Individual Colorimetric Observer Model 
         <https://www.rit.edu/cos/colorscience/re_AsanoObserverFunctions.php>`_
    """
    fs = fieldsize
    rmd = _INDVCMF_DATA['rmd'].copy()
    LMSa = _INDVCMF_DATA['LMSa'].copy()
    docul = _INDVCMF_DATA['docul'].copy()

    # field size corrected macular density:
    pkOd_Macula = 0.485 * np.exp(-fs / 6.132) * (
        1 + var_od_macula / 100)  # varied peak optical density of macula
    corrected_rmd = rmd * pkOd_Macula

    # age corrected lens/ocular media density:
    if (age <= 60):
        correct_lomd = docul[:1] * (1 + 0.02 * (age - 32)) + docul[1:2]
    else:
        correct_lomd = docul[:1] * (1.56 + 0.0667 * (age - 60)) + docul[1:2]
    correct_lomd = correct_lomd * (1 + var_od_lens / 100
                                   )  # varied overall optical density of lens

    # Peak Wavelength Shift:
    wl_shifted = np.empty(LMSa.shape)
    wl_shifted[0] = _WL + var_shft_L
    wl_shifted[1] = _WL + var_shft_M
    wl_shifted[2] = _WL + var_shft_S

    LMSa_shft = np.empty(LMSa.shape)
    kind = 'cubic'
    LMSa_shft[0] = interpolate.interp1d(wl_shifted[0],
                                        LMSa[0],
                                        kind=kind,
                                        bounds_error=False,
                                        fill_value="extrapolate")(_WL)
    LMSa_shft[1] = interpolate.interp1d(wl_shifted[1],
                                        LMSa[1],
                                        kind=kind,
                                        bounds_error=False,
                                        fill_value="extrapolate")(_WL)
    LMSa_shft[2] = interpolate.interp1d(wl_shifted[2],
                                        LMSa[2],
                                        kind=kind,
                                        bounds_error=False,
                                        fill_value="extrapolate")(_WL)
    #    LMSa[2,np.where(_WL >= _WL_CRIT)] = 0 #np.nan # Not defined above 620nm
    #    LMSa_shft[2,np.where(_WL >= _WL_CRIT)] = 0

    ssw = np.hstack(
        (0, np.sign(np.diff(LMSa_shft[2, :]))
         ))  #detect poor interpolation (sign switch due to instability)
    LMSa_shft[2, np.where((ssw >= 0) & (_WL > 560))] = np.nan

    # corrected LMS (no age correction):
    pkOd_L = (0.38 + 0.54 * np.exp(-fs / 1.333)) * (
        1 + var_od_L / 100)  # varied peak optical density of L-cone
    pkOd_M = (0.38 + 0.54 * np.exp(-fs / 1.333)) * (
        1 + var_od_M / 100)  # varied peak optical density of M-cone
    pkOd_S = (0.30 + 0.45 * np.exp(-fs / 1.333)) * (
        1 + var_od_S / 100)  # varied peak optical density of S-cone

    alpha_lms = 0. * LMSa_shft
    alpha_lms[0] = 1 - 10**(-pkOd_L * (10**LMSa_shft[0]))
    alpha_lms[1] = 1 - 10**(-pkOd_M * (10**LMSa_shft[1]))
    alpha_lms[2] = 1 - 10**(-pkOd_S * (10**LMSa_shft[2]))

    # this fix is required because the above math fails for alpha_lms[2,:]==0
    alpha_lms[2, np.where(_WL >= _WL_CRIT)] = 0

    # Corrected to Corneal Incidence:
    lms_barq = alpha_lms * (10**(-corrected_rmd - correct_lomd)) * np.ones(
        alpha_lms.shape)

    # Corrected to Energy Terms:
    lms_bar = lms_barq * _WL

    # Set NaN values to zero:
    lms_bar[np.isnan(lms_bar)] = 0

    # normalized:
    LMS = 100 * lms_bar / np.nansum(lms_bar, axis=1, keepdims=True)

    # Output extra:
    trans_lens = 10**(-correct_lomd)
    trans_macula = 10**(-corrected_rmd)
    sens_photopig = alpha_lms * _WL

    # Add wavelengths:
    LMS = np.vstack((_WL, LMS))

    if ('xyz' in out.lower().split(',')):
        LMS = lmsb_to_xyzb(LMS,
                           fieldsize,
                           out='xyz',
                           allow_negative_values=allow_negative_values)
        out = out.replace('xyz', 'LMS').replace('XYZ', 'LMS')
    if ('lms' in out.lower().split(',')):
        out = out.replace('lms', 'LMS')

    # Interpolate/extrapolate:
    if wl is None:
        interpolation = None
    else:
        interpolation = 'cubic'
    LMS = spd(LMS, wl=wl, interpolation=interpolation, norm_type='area')

    if (out == 'LMS'):
        return LMS
    elif (out == 'LMS,trans_lens,trans_macula,sens_photopig'):
        return LMS, trans_lens, trans_macula, sens_photopig
    elif (out == 'LMS,trans_lens,trans_macula,sens_photopig,LMSa'):
        return LMS, trans_lens, trans_macula, sens_photopig, LMSa
    else:
        return eval(out)
コード例 #20
0
def xyz_to_Ydlep(xyz,
                 cieobs=_CIEOBS,
                 xyzw=_COLORTF_DEFAULT_WHITE_POINT,
                 flip_axes=False,
                 **kwargs):
    """
    Convert XYZ tristimulus values to Y, dominant (complementary) wavelength
    and excitation purity.

    Args:
        :xyz:
            | ndarray with tristimulus values
        :xyzw:
            | None or ndarray with tristimulus values of a single (!) native white point, optional
            | None defaults to xyz of CIE D65 using the :cieobs: observer.
        :cieobs:
            | luxpy._CIEOBS, optional
            | CMF set to use when calculating spectrum locus coordinates.
        :flip_axes:
            | False, optional
            | If True: flip axis 0 and axis 1 in Ydelep to increase speed of loop in function.
            |          (single xyzw with is not flipped!)
    Returns:
        :Ydlep: 
            | ndarray with Y, dominant (complementary) wavelength
              and excitation purity
    """

    xyz3 = np3d(xyz).copy().astype(np.float)

    # flip axis so that shortest dim is on axis0 (save time in looping):
    if (xyz3.shape[0] < xyz3.shape[1]) & (flip_axes == True):
        axes12flipped = True
        xyz3 = xyz3.transpose((1, 0, 2))
    else:
        axes12flipped = False

    # convert xyz to Yxy:
    Yxy = xyz_to_Yxy(xyz3)
    Yxyw = xyz_to_Yxy(xyzw)

    # get spectrum locus Y,x,y and wavelengths:
    SL = _CMF[cieobs]['bar']

    wlsl = SL[0]
    Yxysl = xyz_to_Yxy(SL[1:4].T)[:, None]

    # center on xyzw:
    Yxy = Yxy - Yxyw
    Yxysl = Yxysl - Yxyw
    Yxyw = Yxyw - Yxyw

    #split:
    Y, x, y = asplit(Yxy)
    Yw, xw, yw = asplit(Yxyw)
    Ysl, xsl, ysl = asplit(Yxysl)

    # calculate hue:
    h = math.positive_arctan(x, y, htype='deg')

    hsl = math.positive_arctan(xsl, ysl, htype='deg')

    hsl_max = hsl[0]  # max hue angle at min wavelength
    hsl_min = hsl[-1]  # min hue angle at max wavelength

    dominantwavelength = np.empty(Y.shape)
    purity = np.empty(Y.shape)
    for i in range(xyz3.shape[1]):

        # find index of complementary wavelengths/hues:
        pc = np.where(
            (h[:, i] >= hsl_max) & (h[:, i] <= hsl_min + 360.0)
        )  # hue's requiring complementary wavelength (purple line)
        h[:, i][pc] = h[:, i][pc] - np.sign(
            h[:, i][pc] - 180.0
        ) * 180.0  # add/subtract 180° to get positive complementary wavelength

        # find 2 closest hues in sl:
        #hslb,hib = meshblock(hsl,h[:,i:i+1])
        hib, hslb = np.meshgrid(h[:, i:i + 1], hsl)
        dh = np.abs(hslb - hib)
        q1 = dh.argmin(axis=0)  # index of closest hue
        dh[q1] = 1000.0
        q2 = dh.argmin(axis=0)  # index of second closest hue

        dominantwavelength[:, i] = wlsl[q1] + np.divide(
            np.multiply((wlsl[q2] - wlsl[q1]),
                        (h[:, i] - hsl[q1, 0])), (hsl[q2, 0] - hsl[q1, 0])
        )  # calculate wl corresponding to h: y = y1 + (y2-y1)*(x-x1)/(x2-x1)
        dominantwavelength[:, i][pc] = -dominantwavelength[:, i][
            pc]  #complementary wavelengths are specified by '-' sign

        # calculate excitation purity:
        x_dom_wl = xsl[q1, 0] + (xsl[q2, 0] - xsl[q1, 0]) * (h[:, i] - hsl[
            q1, 0]) / (hsl[q2, 0] - hsl[q1, 0])  # calculate x of dom. wl
        y_dom_wl = ysl[q1, 0] + (ysl[q2, 0] - ysl[q1, 0]) * (h[:, i] - hsl[
            q1, 0]) / (hsl[q2, 0] - hsl[q1, 0])  # calculate y of dom. wl
        d_wl = (x_dom_wl**2.0 +
                y_dom_wl**2.0)**0.5  # distance from white point to sl
        d = (x[:, i]**2.0 +
             y[:, i]**2.0)**0.5  # distance from white point to test point
        purity[:, i] = d / d_wl

        # correct for those test points that have a complementary wavelength
        # calculate intersection of line through white point and test point and purple line:
        xy = np.vstack((x[:, i], y[:, i])).T
        xyw = np.hstack((xw, yw))
        xypl1 = np.hstack((xsl[0, None], ysl[0, None]))
        xypl2 = np.hstack((xsl[-1, None], ysl[-1, None]))
        da = (xy - xyw)
        db = (xypl2 - xypl1)
        dp = (xyw - xypl1)
        T = np.array([[0.0, -1.0], [1.0, 0.0]])
        dap = np.dot(da, T)
        denom = np.sum(dap * db, axis=1, keepdims=True)
        num = np.sum(dap * dp, axis=1, keepdims=True)
        xy_linecross = (num / denom) * db + xypl1
        d_linecross = np.atleast_2d(
            (xy_linecross[:, 0]**2.0 + xy_linecross[:, 1]**2.0)**0.5).T  #[0]
        purity[:, i][pc] = d[pc] / d_linecross[pc][:, 0]
    Ydlep = np.dstack((xyz3[:, :, 1], dominantwavelength, purity))

    if axes12flipped == True:
        Ydlep = Ydlep.transpose((1, 0, 2))
    else:
        Ydlep = Ydlep.transpose((0, 1, 2))
    return Ydlep.reshape(xyz.shape)
コード例 #21
0
ファイル: cam15u.py プロジェクト: uhqinli/luxpy
    Wrapper function for cam15u inverse mode with 'Q,aW,bW' input.
    
    | For help on parameter details: ?luxpy.cam.cam15u
    """
    return cam15u(qab,
                  fov=fov,
                  direction='inverse',
                  inputtype='xyz',
                  outin='Q,aW,bW',
                  parameters=parameters)


#------------------------------------------------------------------------------
if __name__ == '__main__':
    C = _CIE_ILLUMINANTS['C'].copy()
    C = np.vstack((C, cie_interp(_CIE_ILLUMINANTS['D65'], C[0],
                                 kind='spd')[1:]))
    M = _MUNSELL.copy()
    rflM = M['R']
    cieobs = '2006_10'

    # Normalize to Lw:
    Lw = 100
    xyzw2 = spd_to_xyz(C, cieobs=cieobs, relative=False)
    for i in range(C.shape[0] - 1):
        C[i + 1] = Lw * C[i + 1] / xyzw2[i, 1]

    xyz, xyzw = spd_to_xyz(C, cieobs=cieobs, relative=True, rfl=rflM, out=2)
    qab = xyz_to_qabW_cam15u(xyzw, fov=10.0)
    qab2 = cam15u(C,
                  fov=10.0,
                  direction='forward',
コード例 #22
0
ファイル: cct.py プロジェクト: insurgentmedtech/luxpy
def xyz_to_cct_search(xyzw,
                      cieobs=_CIEOBS,
                      out='cct',
                      wl=None,
                      accuracy=0.1,
                      upper_cct_max=10.0**20,
                      approx_cct_temp=True):
    """
    Convert XYZ tristimulus values to correlated color temperature (CCT) and 
    Duv(distance above (> 0) or below ( < 0) the Planckian locus) by a 
    brute-force search. 

    | The algorithm uses an approximate cct_temp (HA approx., see xyz_to_cct_HA) 
      as starting point or uses the middle of the allowed cct-range 
      (1e2 K - 1e20 K, higher causes overflow) on a log-scale, then constructs 
      a 4-step section of the blackbody (Planckian) locus on which to find the
      minimum distance to the 1960 uv chromaticity of the test source.

    Args:
        :xyzw: 
            | ndarray of tristimulus values
        :cieobs: 
            | luxpy._CIEOBS, optional
            | CMF set used to calculated xyzw.
        :out: 
            | 'cct' (or 1), optional
            | Determines what to return.
            | Other options: 'duv' (or -1), 'cct,duv'(or 2), "[cct,duv]" (or -2)
        :wl: 
            | None, optional
            | Wavelengths used when calculating Planckian radiators.
        :accuracy: 
            | float, optional
            | Stop brute-force search when cct :accuracy: is reached.
        :upper_cct_max: 
            | 10.0**20, optional
            | Limit brute-force search to this cct.
        :approx_cct_temp: 
            | True, optional
            | If True: use xyz_to_cct_HA() to get a first estimate of cct to 
              speed up search.

    Returns:
        :returns: 
            | ndarray with:
            |    cct: out == 'cct' (or 1)
            |    duv: out == 'duv' (or -1)
            |    cct, duv: out == 'cct,duv' (or 2)
            |    [cct,duv]: out == "[cct,duv]" (or -2) 
    
    Notes:
        This program is more accurate, but slower than xyz_to_cct_ohno!
        Note that cct must be between 1e3 K - 1e20 K 
        (very large cct take a long time!!!)
    """

    xyzw = np2d(xyzw)

    if len(xyzw.shape) > 2:
        raise Exception('xyz_to_cct_search(): Input xyzw.shape must be <= 2 !')

    # get 1960 u,v of test source:
    Yuvt = xyz_to_Yuv(np.squeeze(
        xyzw))  # remove possible 1-dim + convert xyzw to CIE 1976 u',v'
    #axis_of_v3t = len(Yuvt.shape)-1 # axis containing color components
    ut = Yuvt[:, 1, None]  #.take([1],axis = axis_of_v3t) # get CIE 1960 u
    vt = (2 / 3) * Yuvt[:, 2,
                        None]  #.take([2],axis = axis_of_v3t) # get CIE 1960 v

    # Initialize arrays:
    ccts = np.ones((xyzw.shape[0], 1)) * np.nan
    duvs = ccts.copy()

    #calculate preliminary solution(s):
    if (approx_cct_temp == True):
        ccts_est = xyz_to_cct_HA(xyzw)
        procent_estimates = np.array([[3000.0, 100000.0, 0.05],
                                      [100000.0, 200000.0, 0.1],
                                      [200000.0, 300000.0, 0.25],
                                      [300000.0, 400000.0, 0.4],
                                      [400000.0, 600000.0, 0.4],
                                      [600000.0, 800000.0, 0.4],
                                      [800000.0, np.inf, 0.25]])
    else:
        upper_cct = np.array(upper_cct_max)
        lower_cct = np.array(10.0**2)
        cct_scale_fun = lambda x: np.log10(x)
        cct_scale_ifun = lambda x: np.power(10.0, x)
        dT = (cct_scale_fun(upper_cct) - cct_scale_fun(lower_cct)) / 2
        ccttemp = np.array([cct_scale_ifun(cct_scale_fun(lower_cct) + dT)])
        ccts_est = np2d(ccttemp * np.ones((xyzw.shape[0], 1)))
        dT_approx_cct_False = dT.copy()

    # Loop through all ccts:
    for i in range(xyzw.shape[0]):

        #initialize CCT search parameters:
        cct = np.nan
        duv = np.nan
        ccttemp = ccts_est[i].copy()

        # Take care of (-1, NaN)'s from xyz_to_cct_HA signifying (CCT < lower, CCT > upper) bounds:
        approx_cct_temp_temp = approx_cct_temp
        if (approx_cct_temp == True):
            cct_scale_fun = lambda x: x
            cct_scale_ifun = lambda x: x
            if (ccttemp != -1) & (
                    np.isnan(ccttemp) == False
            ):  # within validity range of CCT estimator-function
                for ii in range(procent_estimates.shape[0]):
                    if (ccttemp >=
                        (1.0 - 0.05 *
                         (ii == 0)) * procent_estimates[ii, 0]) & (
                             ccttemp < (1.0 + 0.05 *
                                        (ii == 0)) * procent_estimates[ii, 1]):
                        procent_estimate = procent_estimates[ii, 2]
                        break

                dT = np.multiply(
                    ccttemp, procent_estimate
                )  # determines range around CCTtemp (25% around estimate) or 100 K
            elif (ccttemp == -1) & (np.isnan(ccttemp) == False):
                ccttemp = np.array([procent_estimates[0, 0] / 2])
                procent_estimate = 1  # cover 0 K to min_CCT of estimator
                dT = np.multiply(ccttemp, procent_estimate)
            elif (np.isnan(ccttemp) == True):
                upper_cct = np.array(upper_cct_max)
                lower_cct = np.array(10.0**2)
                cct_scale_fun = lambda x: np.log10(x)
                cct_scale_ifun = lambda x: np.power(10.0, x)
                dT = (cct_scale_fun(upper_cct) - cct_scale_fun(lower_cct)) / 2
                ccttemp = np.array(
                    [cct_scale_ifun(cct_scale_fun(lower_cct) + dT)])
                approx_cct_temp = False
        else:
            dT = dT_approx_cct_False

        nsteps = 3
        signduv = 1.0
        ccttemp = ccttemp[0]
        delta_cct = dT
        while ((delta_cct > accuracy)):  # keep converging on CCT

            #generate range of ccts:
            ccts_i = cct_scale_ifun(
                np.linspace(
                    cct_scale_fun(ccttemp) - dT,
                    cct_scale_fun(ccttemp) + dT, nsteps + 1))

            ccts_i[ccts_i < 100.0] = 100.0  # avoid nan's in calculation

            # Generate BB:
            BB = cri_ref(ccts_i, wl3=wl, ref_type=['BB'], cieobs=cieobs)

            # Calculate xyz:
            xyz = spd_to_xyz(BB, cieobs=cieobs)

            # Convert to CIE 1960 u,v:
            Yuv = xyz_to_Yuv(np.squeeze(
                xyz))  # remove possible 1-dim + convert xyz to CIE 1976 u',v'
            #axis_of_v3 = len(Yuv.shape)-1 # axis containing color components
            u = Yuv[:, 1, None]  # get CIE 1960 u
            v = (2.0 / 3.0) * Yuv[:, 2, None]  # get CIE 1960 v

            # Calculate distance between list of uv's and uv of test source:
            dc = ((ut[i] - u)**2 + (vt[i] - v)**2)**0.5
            if np.isnan(dc.min()) == False:
                #eps = _EPS
                q = dc.argmin()

                if np.size(
                        q
                ) > 1:  #to minimize calculation time: only calculate median when necessary
                    cct = np.median(ccts[q])
                    duv = np.median(dc[q])
                    q = np.median(q)
                    q = int(q)  #must be able to serve as index

                else:
                    cct = ccts_i[q]
                    duv = dc[q]

                if (q == 0):
                    ccttemp = cct_scale_ifun(
                        np.array(cct_scale_fun([cct])) + 2 * dT / nsteps)
                    #dT = 2.0*dT/nsteps
                    continue  # look in higher section of planckian locus

                if (q == np.size(ccts_i)):
                    ccttemp = cct_scale_ifun(
                        np.array(cct_scale_fun([cct])) - 2 * dT / nsteps)
                    #dT = 2.0*dT/nsteps
                    continue  # look in lower section of planckian locus

                if (q > 0) & (q < np.size(ccts_i) - 1):
                    dT = 2 * dT / nsteps
                    # get Duv sign:
                    d_p1m1 = ((u[q + 1] - u[q - 1])**2.0 +
                              (v[q + 1] - v[q - 1])**2.0)**0.5

                    x = (dc[q - 1]**2.0 - dc[q + 1]**2.0 +
                         d_p1m1**2.0) / 2.0 * d_p1m1
                    vBB = v[q - 1] + ((v[q + 1] - v[q - 1]) * (x / d_p1m1))
                    signduv = np.sign(vt[i] - vBB)

                #calculate difference with previous intermediate solution:
                delta_cct = abs(cct - ccttemp)

                ccttemp = np.array(cct)  #%set new intermediate CCT
                approx_cct_temp = approx_cct_temp_temp
            else:
                ccttemp = np.nan
                cct = np.nan
                duv = np.nan

        duvs[i] = signduv * abs(duv)
        ccts[i] = cct

    # Regulate output:
    if (out == 'cct') | (out == 1):
        return np2d(ccts)
    elif (out == 'duv') | (out == -1):
        return np2d(duvs)
    elif (out == 'cct,duv') | (out == 2):
        return np2d(ccts), np2d(duvs)
    elif (out == "[cct,duv]") | (out == -2):
        return np.vstack((ccts, duvs)).T
コード例 #23
0
    """
    return cam18sl(xyz, datab = xyzb, Lb = Lb, fov = fov, direction = 'forward', inputtype = 'xyz', outin = 'Q,aS,bS', parameters = parameters)
                
def qabS_cam18sl_to_xyz(qab, xyzb = None, Lb = [100], fov = 10.0, parameters = None, **kwargs):
    """
    Wrapper function for cam18sl inverse mode with 'Q,aS,bS' input.
    
    | For help on parameter details: ?luxpy.cam.cam18sl
    """
    return cam18sl(qab, datab = xyzb, Lb = Lb, fov = fov, direction = 'inverse', inputtype = 'xyz', outin = 'Q,aS,bS', parameters = parameters)


#------------------------------------------------------------------------------
if __name__ == '__main__':
    C = _CIE_ILLUMINANTS['C'].copy()
    C = np.vstack((C,cie_interp(_CIE_ILLUMINANTS['D65'],C[0],kind='spd')[1:]))
    M = _MUNSELL.copy()
    rflM = M['R']
    cieobs = '2006_10'
    
    # Normalize to Lw:
    Lw = 100
    xyzw2 = spd_to_xyz(C, cieobs = cieobs, relative = False)
    for i in range(C.shape[0]-1):
        C[i+1] = Lw*C[i+1]/xyzw2[i,1]

    
    xyz, xyzw = spd_to_xyz(C, cieobs = cieobs, relative = True, rfl = rflM, out = 2)
    qab = xyz_to_qabW_cam18sl(xyzw, xyzb = None, Lb = [100], fov = 10.0)
    print('qab: ',qab)
    qab2 = cam18sl(C, datab = None, Lb = [100], fov = 10.0, direction = 'forward', inputtype = 'spd', outin = 'Q,aW,bW', parameters = None)
コード例 #24
0
def get_spd(dvc = 0, Tint = 0.0, autoTint_max = _TINT_MAX, Nscans = 1, wlstep = 1, 
            wlstart = 360, wlend = 830, 
            twait = _TWAIT_STATUS, out = "spd", close_device = True, 
            laser_on = 0, laser_intensity = 1000, verbosity = _VERBOSITY):
    """
    Measure spectral radiance (W/nm.sr.m²).
    
    Args:
        :dvc:
            | 0 or Int or ctypes.wintypes.LP_c_ulong, optional
            | Number of the spectrometer device to load (0 = 1st) or handle (ctypes) to pre_initialized device.
        :Tint:
            | 0 or Float, optional
            | Integration time in seconds. (if 0: find best integration time, but < autoTint_max).
        :autoTint_max:
            | Limit Tint to this value when Tint = 0.
        :Nscans:
            | 1 or Int, optional
            | Number of scans to average.
        :wlstep: 
            | 1 or Int, optional
            | Wavelength step size in nm.
        :wlstart:
            | 360 or Int, optional
            | Start wavelength in nm. (min = 350 nm)
        :wlend:
            | 830 or Int, optional
            | Start wavelength in nm. (max = 1000 nm)
        :twait:
            | 0.1 or Float, optional
            | Time in seconds to wait before checking status of device. 
            | (If 0: wait :Tint: seconds, unless :Tint: == 0, then wait _TWAIT_STATUS seconds)
        :out:
            | "spd" [",dvc, Errors"], optional
            | Requested return. If "spd" in out.split(","):do spectral measurement, else: initialize dvc handle [and turn laser ON or OFF].
        :close_device:
            | True or False, optional
            | Close device at the end of the measurement.
            | If 'dvc' not in out.split(','): always close!!!
        :laser_on:
            | 0: OFF, >0: ON -> 1: PWM 7Hz, 2: PWM 28 Hz, 3: 255 Hz, optional
            | True (>0): turn laser on to select measurement area; False (0): turn off. 
            | (Can only be ON when "spd" is not in out.split(",") | if Tint is None)
        :laser_intensity: 
            | 1000.0, optional
            | Laser intensity in ‰ (pro-mille).
        :verbosity:
            | 1, optional
            | 0: no printed error message output.
    Returns:
        :returns: 
            | spd [,dvc, Errors] (as specified in :out:)
            | - "spd": ndarray with wavelengths (1st row) and spectral radiance (2nd row).
            | - "dvc": ctypes handle to device (if open) or nan (if closed).
            | - "Errors": dict with error message returned by device during various steps of the spectral measurement process.
    """
    # Initialize dict with errors messages for each of the different measurement steps:
    Errors = {} 
    Errors["get_spd"] = None
    out = out.replace(' ','')
    
    # Get wavelength range:
    wls = np.arange(np.int(wlstart), np.int(wlend)+np.int(wlstep), np.int(wlstep), dtype=np.float32)
    
    # Initialize spd filled with nan's:
    spd = np.vstack((wls, np.nan*np.ones(wls.shape)))

    try:
        # Initialize device :
        dvc, Errors = dvc_open(dvc = dvc, Errors = Errors, out = "dvc,Errors", verbosity = verbosity)    
        
        if (_check_dvc_open(dvc)) & (("spd" in out.split(",")) & (Tint is not None)):
            
            # Turn off laser before starting measurement:
            Errors = set_laser(dvc = dvc, laser_on = False, laser_intensity = laser_intensity, Errors = Errors, verbosity = verbosity)
                    
                            
            # Start measurement:
            Tint, Errors = start_meas(dvc, Tint = Tint, autoTint_max = autoTint_max, Nscans = Nscans, wlstep = wlstep, Errors = Errors, out = "Tint, Errors", verbosity = verbosity)
            
            # wait until measurement is finished (check intermediate status every twait seconds):
            status, Errors = wait_until_meas_is_finished(dvc, Tint = Tint, twait = twait, out = "status,Errors", Errors = Errors, verbosity = verbosity)
            
            if status == False:
                # Read measured spectral radiance from device:
                spd, Errors = read_spectral_radiance(dvc, wlstart = wlstart, wlend = wlend, wlstep = wlstep, out = "spd,Errors", Errors = Errors, verbosity = verbosity)    
            
        elif (("spd" not in out.split(",")) | (Tint is None)): # only dvc handle was requested or to turn laser ON.
            Errors = set_laser(dvc = dvc, laser_on = laser_on, laser_intensity = laser_intensity, Errors = Errors, verbosity = verbosity)
        
        # Close device:
        dvc, Errors = dvc_close(dvc, Errors = Errors, close_device = (close_device) | ('dvc' not in out.split(',')), out = "dvc,Errors", verbosity = verbosity)
    
        
        Errors["get_spd"] = int(np.sum([int(bool(x)) for x in Errors.values() if (x is not None)]) > 0)
        
    except:
        Errors["get_spd"] = "get_spd fails."
        
    finally:
        # Generate requested return:
        if out == "spd":
            return spd
        elif out == "dvc":
            return dvc
        elif out == "Errors":
            return Errors
        elif out == "spd,Errors":
            return spd, Errors
        elif out == "spd,dvc":
            return spd, dvc
        elif out == "spd,Errors,dvc":
            return spd, Errors, dvc
        elif out == "spd,dvc,Errors":
            return spd, dvc, Errors
        else:
            raise Exception("Requested output error.")
コード例 #25
0
def read_spectral_radiance(dvc, wlstart = 360, wlend = 830, wlstep = 1, out = "spd,Errors", Errors = {}, verbosity = _VERBOSITY):
    """
    Read measured spectral radiance (W/m².sr.nm) from device.
    
    Args:
        :dvc:
            | Device handle (of class ctypes).
        :wlstart:
            | 360 or Int, optional
            | Start wavelength in nm. (min = 350 nm)
        :wlend:
            | 830 or Int, optional
            | Start wavelength in nm. (max = 1000 nm)
        :out:
            | "status,Errors", optional
            | Requested return.
        :Errors:
            | Dict with error messages.
        :verbosity:
            | 1, optional
            | 0: no printed error message output.
    
    Returns:
        :spd:
            | ndarray with wavelengths (1st row) and spectral radiance (2nd row; nan's if error).
        :Errors:
            | Dict with error messages.

    """
    out = out.replace(' ','')
    
    # Get wavelength range:
    wls = np.arange(np.int(wlstart), np.int(wlend)+np.int(wlstep), np.int(wlstep), dtype=np.float32)
    
    # Initialize spd filled with nan's:
    spd = np.vstack((wls, np.nan*np.ones(wls.shape)))
    
#    try:
    Errors["SpecRadEx"] = None
    
    # Convert measurement parameters to ctypes:
    dwBeg = DWORD(np.int(wlstart)) # wavelength start in nm
    dwEnd = DWORD(np.int(wlend)) # wavelength end in nm
    
    # create buffer for spectral radiance data:
    fSprad = (FLOAT * wls.shape[0])() 
    
    # get pointer to start of spectral radiance 
    dwError = jtre.JETI_SpecRadEx(dvc, dwBeg, dwEnd, ctypes.byref(fSprad)) 
    Errors["SpecRadEx"] = dwError
    if (dwError != 0):
        if (verbosity == 1):
            print("Could not read spectral radiance data from device. Error code = {}".format(dwError))
    else:
        # Read spectral radiance from buffer:
        Sprad= np.frombuffer(fSprad, np.float32)
            
        # Overwrite 2nd row of spd array with measured spectral radiance values:
        spd[1,:] = Sprad  
#    except:
#        Errors["SpecRadEx"] = "read_spectral_radiance() fails."
#    finally:
    # Generate requested return:
    if out == "spd,Errors":
        return spd, Errors
    elif out == "spd":
        return spd
    elif out == "Errors":
        return Errors
    else:
        raise Exception("Requested output error.")
コード例 #26
0
def calculate_VF_PX_models(S, cri_type = _VF_CRI_DEFAULT, sampleset = None, pool = False, \
                           pcolorshift = {'href': np.arange(np.pi/10,2*np.pi,2*np.pi/10),\
                                          'Cref' : _VF_MAXR, 'sig' : _VF_SIG, 'labels' : '#'},\
                           vfcolor = 'k', verbosity = 0):
    """
    Calculate Vector Field and Pixel color shift models.
    
    Args:
        :cri_type: 
            | _VF_CRI_DEFAULT or str or dict, optional
            | Specifies type of color fidelity model to use. 
            | Controls choice of ref. ill., sample set, averaging, scaling, etc.
            | See luxpy.cri.spd_to_cri for more info.
        :sampleset:
            | None or str or ndarray, optional
            | Sampleset to be used when calculating vector field model.
        :pool:
            | False, optional
            | If :S: contains multiple spectra, True pools all jab data before 
              modeling the vector field, while False models a different field 
              for each spectrum.
        :pcolorshift: 
            | default dict (see below) or user defined dict, optional
            | Dict containing the specification input 
              for apply_poly_model_at_hue_x().
            | Default dict = {'href': np.arange(np.pi/10,2*np.pi,2*np.pi/10),
            |                'Cref' : _VF_MAXR, 
            |                'sig' : _VF_SIG, 
            |                'labels' : '#'} 
            | The polynomial models of degree 5 and 6 can be fully specified or 
              summarized by the model parameters themselved OR by calculating the
             dCoverC and dH at resp. 5 and 6 hues.
        :vfcolor:
            | 'k', optional
            | For plotting the vector fields.
        :verbosity: 
            | 0, optional
            | Report warnings or not.
    
    Returns:
        :returns:
            | :dataVF:, :dataPX: 
            | Dicts, for more info, see output description of resp.: 
              luxpy.cri.VF_colorshift_model() and luxpy.cri.PX_colorshift_model()
    """
    # calculate VectorField cri_color_shift model:
    dataVF = VF_colorshift_model(S, cri_type = cri_type, sampleset = sampleset, vfcolor = vfcolor, pcolorshift = pcolorshift, pool = pool, verbosity = verbosity)
    
    # Set jab_ranges and _deltas for PX-model pixel calculations:
    PX_jab_deltas = np.array([_VF_DELTAR,_VF_DELTAR,_VF_DELTAR]) #set same as for vectorfield generation
    PX_jab_ranges = np.vstack(([0,100,_VF_DELTAR],[-_VF_MAXR,_VF_MAXR+_VF_DELTAR,_VF_DELTAR], [-_VF_MAXR,_VF_MAXR+_VF_DELTAR,_VF_DELTAR]))#IES4880 gamut
   
    # Calculate shift vectors using vectorfield and pixel methods:
    delta_SvsVF_vshift_ab_mean = np.nan*np.ones((len(dataVF),1))
    delta_SvsVF_vshift_ab_mean_normalized = delta_SvsVF_vshift_ab_mean.copy()
    delta_PXvsVF_vshift_ab_mean = np.nan*np.ones((len(dataVF),1))
    delta_PXvsVF_vshift_ab_mean_normalized = delta_PXvsVF_vshift_ab_mean.copy()
    dataPX = [[] for k in range(len(dataVF))]
    for Snr in range(len(dataVF)):

        # Calculate shifts using pixel method, PX:
        dataPX[Snr] = PX_colorshift_model(dataVF[Snr]['Jab']['Jabt'][:,0,:],dataVF[Snr]['Jab']['Jabr'][:,0,:], jab_ranges = PX_jab_ranges, jab_deltas = PX_jab_deltas,limit_grid_radius = _VF_MAXR)
        
        # Calculate shift difference between Samples (S) and VectorField model predictions (VF):
        delta_SvsVF_vshift_ab = dataVF[Snr]['vshifts']['vshift_ab_s'] - dataVF[Snr]['vshifts']['vshift_ab_s_vf']
        delta_SvsVF_vshift_ab_mean[Snr] = np.nanmean(np.sqrt((delta_SvsVF_vshift_ab[...,1:3]**2).sum(axis = delta_SvsVF_vshift_ab[...,1:3].ndim-1)), axis=0)
        delta_SvsVF_vshift_ab_mean_normalized[Snr] = delta_SvsVF_vshift_ab_mean[Snr]/dataVF[Snr]['Jab']['DEi'].mean(axis=0)
        
        # Calculate shift difference between PiXel method (PX) and VectorField (VF):
        delta_PXvsVF_vshift_ab = dataPX[Snr]['vshifts']['vectorshift_ab_J0'] - dataVF[Snr]['vshifts']['vshift_ab_vf']
        delta_PXvsVF_vshift_ab_mean[Snr] = np.nanmean(np.sqrt((delta_PXvsVF_vshift_ab[...,1:3]**2).sum(axis = delta_PXvsVF_vshift_ab[...,1:3].ndim-1)), axis=0)
        delta_PXvsVF_vshift_ab_mean_normalized[Snr] = delta_PXvsVF_vshift_ab_mean[Snr]/dataVF[Snr]['Jab']['DEi'].mean(axis=0)

        dataVF[Snr]['vshifts']['delta_PXvsVF_vshift_ab_mean'] = delta_PXvsVF_vshift_ab_mean[Snr]
        dataVF[Snr]['vshifts']['delta_SvsVF_vshift_ab_mean'] = delta_SvsVF_vshift_ab_mean[Snr]
        dataVF[Snr]['vshifts']['delta_SvsVF_vshift_ab_mean_normalized'] = delta_SvsVF_vshift_ab_mean_normalized[Snr]
        dataVF[Snr]['vshifts']['delta_PXvsVF_vshift_ab_mean_normalized'] = delta_PXvsVF_vshift_ab_mean_normalized[Snr]
        dataPX[Snr]['vshifts']['delta_PXvsVF_vshift_ab_mean'] = dataVF[Snr]['vshifts']['delta_PXvsVF_vshift_ab_mean']
        dataPX[Snr]['vshifts']['delta_PXvsVF_vshift_ab_mean_normalized'] = dataVF[Snr]['vshifts']['delta_PXvsVF_vshift_ab_mean_normalized']

    return dataVF, dataPX
コード例 #27
0
def cam18sl(data, datab = None, Lb = [100], fov = 10.0, inputtype = 'xyz', direction = 'forward', outin = 'Q,aW,bW', parameters = None):
    """
    Convert between CIE 2006 10°  XYZ tristimulus values (or spectral data) 
    and CAM18sl color appearance correlates.
    
    Args:
        :data: 
            | ndarray of CIE 2006 10°  absolute XYZ tristimulus values or spectral data
              or color appearance attributes of stimulus
        :datab: 
            | ndarray of CIE 2006 10°  absolute XYZ tristimulus values or spectral data
              of stimulus background
        :Lb: 
            | [100], optional
            | Luminance (cd/m²) value(s) of background(s) calculated using the CIE 2006 10° CMFs 
            | (only used in case datab == None and the background is assumed to be an Equal-Energy-White)
        :fov: 
            | 10.0, optional
            | Field-of-view of stimulus (for size effect on brightness)
        :inputtpe:
            | 'xyz' or 'spd', optional
            | Specifies the type of input: 
            |     tristimulus values or spectral data for the forward mode.
        :direction:
            | 'forward' or 'inverse', optional
            |   -'forward': xyz -> cam18sl
            |   -'inverse': cam18sl -> xyz 
        :outin:
            | 'Q,aW,bW' or str, optional
            | 'Q,aW,bW' (brightness and opponent signals for amount-of-neutral)
            |  other options: 'Q,aM,bM' (colorfulness) and 'Q,aS,bS' (saturation)
            | Str specifying the type of 
            |     input (:direction: == 'inverse') and 
            |     output (:direction: == 'forward')
        :parameters:
            | None or dict, optional
            | Set of model parameters.
            |   - None: defaults to luxpy.cam._CAM18SL_PARAMETERS 
            |    (see references below)
    
    Returns:
        :returns: 
            | ndarray with color appearance correlates (:direction: == 'forward')
            |  or 
            | XYZ tristimulus values (:direction: == 'inverse')
            
    Notes:
        | * Instead of using the CIE 1964 10° CMFs in some places of the model,
        |   the CIE 2006 10° CMFs are used througout, making it more self_consistent.
        |   This has an effect on the k scaling factors (now different those in CAM15u) 
        |   and the illuminant E normalization for use in the chromatic adaptation transform.
        |   (see future erratum to Hermans et al., 2018)
        | * The paper also used an equation for the amount of white W, which is
        |   based on a Q value not expressed in 'bright' ('cA' = 0.937 instead of 123). 
        |   This has been corrected for in the luxpy version of the model, i.e.
        |   _CAM18SL_PARAMETERS['cW'][0] has been changed from 2.29 to 1/11672.
        |   (see future erratum to Hermans et al., 2018)

    References: 
        1. `Hermans, S., Smet, K. A. G., & Hanselaer, P. (2018). 
        "Color appearance model for self-luminous stimuli."
        Journal of the Optical Society of America A, 35(12), 2000–2009. 
        <https://doi.org/10.1364/JOSAA.35.002000>`_ 
     """
    
    if parameters is None:
        parameters = _CAM18SL_PARAMETERS
        
    outin = outin.split(',')    
    
    #unpack model parameters:
    cA, cAlms, cHK, cM, cW, ca, calms, cb, cblms, cfov, k, naka, unique_hue_data = [parameters[x] for x in sorted(parameters.keys())]
    
    # precomputations:
    Mlms2xyz = np.linalg.inv(_CMF['2006_10']['M'])
    MAab = np.array([cAlms,calms,cblms])
    invMAab = np.linalg.inv(MAab)    
    
    #-------------------------------------------------
    # setup EEW reference field and default background field (Lr should be equal to Lb):
    # Get Lb values:
    if datab is not None:
        if inputtype != 'xyz':
            Lb = spd_to_xyz(datab, cieobs = '2006_10', relative = False)[...,1:2]
        else:
            Lb = datab[...,1:2]
    else:
        if isinstance(Lb,list):
            Lb = np2dT(Lb)

    # Setup EEW ref of same luminance as datab:
    if inputtype == 'xyz':
        wlr = getwlr(_CAM18SL_WL3)
    else:
        if datab is None:
            wlr = data[0] # use wlr of stimulus data
        else:
            wlr = datab[0] # use wlr of background data
    datar = np.vstack((wlr,np.ones((Lb.shape[0], wlr.shape[0])))) # create eew
    xyzr = spd_to_xyz(datar, cieobs = '2006_10', relative = False) # get abs. tristimulus values
    datar[1:] = datar[1:]/xyzr[...,1:2]*Lb
    # Create datab if None:
    if (datab is None):
        if inputtype != 'xyz':
            datab = datar.copy()
        else:
            datab = spd_to_xyz(datar, cieobs = '2006_10', relative = False)
            datar = datab.copy()

 
    # prepare data and datab for loop over backgrounds: 
    # make axis 1 of datab have 'same' dimensions as data:         
    if (data.ndim == 2): 
        data = np.expand_dims(data, axis = 1)  # add light source axis 1     

    if inputtype == 'xyz': 
        if datab.shape[0] == 1: #make datab and datar have same lights source dimension (used to store different backgrounds) size as data
            datab = np.repeat(datab,data.shape[1],axis=0)  
            datar = np.repeat(datar,data.shape[1],axis=0)               
    else:
        if datab.shape[0] == 2:
            datab = np.vstack((datab[0],np.repeat(datab[1:], data.shape[1], axis = 0)))
        if datar.shape[0] == 2:
            datar = np.vstack((datar[0],np.repeat(datar[1:], data.shape[1], axis = 0)))

    # Flip light source/ background dim to axis 0:
    data = np.transpose(data, axes = (1,0,2))

    #-------------------------------------------------
    
    #initialize camout:     
    dshape = list(data.shape)
    dshape[-1] = len(outin) # requested number of correlates
    if (inputtype != 'xyz') & (direction == 'forward'):
        dshape[-2] = dshape[-2] - 1 # wavelength row doesn't count & only with forward can the input data be spectral
    camout = np.nan*np.ones(dshape)
    
  
    for i in range(data.shape[0]):
       
        # get rho, gamma, beta of background and reference white:
        if (inputtype != 'xyz'):
            xyzb = spd_to_xyz(np.vstack((datab[0], datab[i+1:i+2,:])), cieobs = '2006_10', relative = False)
            xyzr = spd_to_xyz(np.vstack((datar[0], datar[i+1:i+2,:])), cieobs = '2006_10', relative = False)
        else:
            xyzb = datab[i:i+1,:] 
            xyzr = datar[i:i+1,:] 

        lmsb = np.dot(_CMF['2006_10']['M'],xyzb.T).T # convert to l,m,s
        rgbb = (lmsb / _CMF['2006_10']['K']) * k # convert to rho, gamma, beta
        #lmsr = np.dot(_CMF['2006_10']['M'],xyzr.T).T # convert to l,m,s
        #rgbr = (lmsr / _CMF['2006_10']['K']) * k # convert to rho, gamma, beta
        #rgbr = rgbr/rgbr[...,1:2]*Lb[i] # calculated EEW cone excitations at same luminance values as background
        rgbr = np.ones(xyzr.shape)*Lb[i] # explicitely equal EEW cone excitations at same luminance values as background

        if direction == 'forward':
            # get rho, gamma, beta of stimulus:
            if (inputtype != 'xyz'):
                xyz = spd_to_xyz(data[i], cieobs = '2006_10', relative = False)   
            elif (inputtype == 'xyz'):
                xyz = data[i]
            lms = np.dot(_CMF['2006_10']['M'],xyz.T).T # convert to l,m,s
            rgb = (lms / _CMF['2006_10']['K']) * k # convert to rho, gamma, beta

            # apply von-kries cat with D = 1:
            if (rgbb == 0).any():
                Mcat = np.eye(3)
            else:
                Mcat = np.diag((rgbr/rgbb)[0])
            rgba = np.dot(Mcat,rgb.T).T

            # apply naka-rushton compression:
            rgbc = naka_rushton(rgba, n = naka['n'], sig = naka['sig'](rgbr.mean()), noise = naka['noise'], scaling = naka['scaling'])

            #rgbc = np.ones(rgbc.shape)*rgbc.mean() # test if eew ends up at origin
            
            # calculate achromatic and color difference signals, A, a, b:
            Aab = np.dot(MAab, rgbc.T).T
            A,a,b = asplit(Aab)
            a = ca*a
            b = cb*b

            # calculate colorfullness like signal M:
            M = cM*((a**2.0 + b**2.0)**0.5)

            # calculate brightness Q:
            Q = cA*(A + cHK[0]*M**cHK[1]) # last term is contribution of Helmholtz-Kohlrausch effect on brightness

            # calculate saturation, s:
            s = M / Q

            # calculate amount of white, W:
            W = 1 / (1.0 + cW[0]*(s**cW[1]))

            #  adjust Q for size (fov) of stimulus (matter of debate whether to do this before or after calculation of s or W, there was no data on s, M or W for different sized stimuli: after)
            Q = Q*(fov/10.0)**cfov

            # calculate hue, h and Hue quadrature, H:
            h = hue_angle(a,b, htype = 'deg')
            if 'H' in outin:
                H = hue_quadrature(h, unique_hue_data = unique_hue_data)
            else:
                H = None

            # calculate cart. co.:
            if 'aM' in outin:
                aM = M*np.cos(h*np.pi/180.0)
                bM = M*np.sin(h*np.pi/180.0)
            
            if 'aS' in outin:
                aS = s*np.cos(h*np.pi/180.0)
                bS = s*np.sin(h*np.pi/180.0)
            
            if 'aW' in outin:
                aW = W*np.cos(h*np.pi/180.0)
                bW = W*np.sin(h*np.pi/180.0)

            if (outin != ['Q','aW','bW']):
                camout[i] =  eval('ajoin(('+','.join(outin)+'))')
            else:
                camout[i] = ajoin((Q,aW,bW))
    
        
        elif direction == 'inverse':

            # get Q, M and a, b depending on input type:        
            if 'aW' in outin:
                Q,a,b = asplit(data[i])
                Q = Q / ((fov/10.0)**cfov) #adjust Q for size (fov) of stimulus back to that 10° ref
                W = (a**2.0 + b**2.0)**0.5
                s = (((1.0 / W) - 1.0)/cW[0])**(1.0/cW[1])
                M = s*Q
                
            
            if 'aM' in outin:
                Q,a,b = asplit(data[i])
                Q = Q / ((fov/10.0)**cfov) #adjust Q for size (fov) of stimulus back to that 10° ref
                M = (a**2.0 + b**2.0)**0.5
            
            if 'aS' in outin:
                Q,a,b = asplit(data[i])
                Q = Q / ((fov/10.0)**cfov) #adjust Q for size (fov) of stimulus back to that 10° ref
                s = (a**2.0 + b**2.0)**0.5
                M = s*Q
                      
            if 'h' in outin:
                Q, WsM, h = asplit(data[i])
                Q = Q / ((fov/10.0)**cfov) #adjust Q for size (fov) of stimulus back to that 10° ref
                if 'W' in outin:
                     s = (((1.0 / WsM) - 1.0)/cW[0])**(1.0/cW[1])
                     M = s*Q
                elif 's' in outin:
                     M = WsM*Q
                elif 'M' in outin:
                     M = WsM
            
            # calculate achromatic signal, A from Q and M:
            A = Q/cA - cHK[0]*M**cHK[1]

            # calculate hue angle:
            h = hue_angle(a,b, htype = 'rad')
            
            # calculate a,b from M and h:
            a = (M/cM)*np.cos(h)
            b = (M/cM)*np.sin(h)

            a = a/ca
            b = b/cb

            # create Aab:
            Aab = ajoin((A,a,b))    

            # calculate rgbc:
            rgbc = np.dot(invMAab, Aab.T).T    

            # decompress rgbc to (adapted) rgba :
            rgba = naka_rushton(rgbc, n = naka['n'], sig = naka['sig'](rgbr.mean()), noise = naka['noise'], scaling = naka['scaling'], direction = 'inverse')

            # apply inverse von-kries cat with D = 1:
            rgb = np.dot(np.diag((rgbb/rgbr)[0]),rgba.T).T

            # convert rgb to lms to xyz:
            lms = rgb/k*_CMF['2006_10']['K']  
            xyz = np.dot(Mlms2xyz,lms.T).T 
            
            camout[i] = xyz
    
    if camout.shape[0] == 1:
        camout = np.squeeze(camout,axis = 0)
    
    return camout
コード例 #28
0
def subsample_RFL_set(rfl, rflpath = '', samplefcn = 'rand', S = _CIE_ILLUMINANTS['E'], \
                      jab_ranges = None, jab_deltas = None, cieobs = _VF_CIEOBS, cspace = _VF_CSPACE, \
                      ax = np.arange(-_VF_MAXR,_VF_MAXR+_VF_DELTAR,_VF_DELTAR), \
                      bx = np.arange(-_VF_MAXR,_VF_MAXR+_VF_DELTAR,_VF_DELTAR), \
                      jx = None, limit_grid_radius = 0):
    """
    Sub-samples a spectral reflectance set by pixelization of color space.
    
    Args:
        :rfl: 
            | ndarray or str
            | Array with of str referring to a set of spectral reflectance 
              functions to be subsampled.
            | If str to file: file must contain data as columns, with first 
              column the wavelengths.
        :rflpath:
            | '' or str, optional
            | Path to folder with rfl-set specified in a str :rfl: filename.
        :samplefcn:
            | 'rand' or 'mean', optional
            |   -'rand': selects a random sample from the samples within each pixel
            |   -'mean': returns the mean spectral reflectance in each pixel.
        :S: 
            | _CIE_ILLUMINANTS['E'], optional
            | Illuminant used to calculate the color coordinates of the spectral 
              reflectance samples.
        :jab_ranges:
            | None or ndarray, optional
            | Specifies the pixelization of color space.
              (ndarray.shape = (3,3), with  first axis: J,a,b, and second 
               axis: min, max, delta)
        :jab_deltas:
            | float or ndarray, optional
            | Specifies the sampling range. 
            | A float uses jab_deltas as the maximum Euclidean distance to select
             samples around each pixel center. A ndarray of 3 deltas, uses
             a city block sampling around each pixel center.
        :cspace:
            | _VF_CSPACE or dict, optional
            | Specifies color space. See _VF_CSPACE_EXAMPLE for example structure.
        :cieobs:
            | _VF_CIEOBS or str, optional
            | Specifies CMF set used to calculate color coordinates.
        :ax: 
            | default ndarray or user defined ndarray, optional
            | default = np.arange(-_VF_MAXR,_VF_MAXR+_VF_DELTAR,_VF_DELTAR) 
        :bx: 
            | default ndarray or user defined ndarray, optional
            | default = np.arange(-_VF_MAXR,_VF_MAXR+_VF_DELTAR,_VF_DELTAR) 
        :jx: 
            | None, optional
            | Note that not-None :jab_ranges: override :ax:, :bx: and :jx input.
        :limit_grid_radius:
            | 0, optional
            | A value of zeros keeps grid as specified  by axr,bxr.
            | A value > 0 only keeps (a,b) coordinates within :limit_grid_radius:
   
    Returns:
        :returns:
            | rflsampled, jabp
            | ndarrays with resp. the subsampled set of spectral reflectance 
              functions and the pixel coordinate centers.
    """
    # Testing effects of sample set, pixel size and gamut size:
    if type(rfl) == str:
        rfl = pd.read_csv(os.path.join(rflpath,rfl),header = None).get_values().T
  
    # Calculate Jab coordinates of samples:
    xyz,xyzw = spd_to_xyz(S, cieobs = cieobs, rfl = rfl.copy(), out = 2)
    cspace_pars = cspace.copy()
    cspace_pars.pop('type')
    cspace_pars['xyzw'] = xyzw
    jab = colortf(xyz,tf = cspace['type'],fwtf = cspace_pars)

    # Generate grid and get samples in each grid:
    gridp,idxp, jabp, pixelsamplenrs, pixelIDs = get_pixel_coordinates(jab, jab_ranges = jab_ranges, jab_deltas = jab_deltas, limit_grid_radius = limit_grid_radius)

    # Get rfls from set using sampling function (mean or rand):
    W = rfl[:1]
    R = rfl[1:]
    rflsampled = np.nan*np.ones((len(idxp),R.shape[1]))
    for i in range(len(idxp)):
        if samplefcn == 'mean':
            rfl_i = np.nanmean(rfl[pixelsamplenrs[i],:],axis = 0)
        else:
            samplenr_i = np.random.randint(len(pixelsamplenrs[i]))
            rfl_i = rfl[pixelsamplenrs[i][samplenr_i],:]
        rflsampled[i,:] = rfl_i        
    rflsampled = np.vstack((W,rflsampled))
    return rflsampled, jabp
コード例 #29
0
ファイル: cct.py プロジェクト: insurgentmedtech/luxpy
def xyz_to_cct_ohno(xyzw,
                    cieobs=_CIEOBS,
                    out='cct',
                    wl=None,
                    accuracy=0.1,
                    force_out_of_lut=True,
                    upper_cct_max=10.0**20,
                    approx_cct_temp=True):
    """
    Convert XYZ tristimulus values to correlated color temperature (CCT) and 
    Duv (distance above (>0) or below (<0) the Planckian locus) 
    using Ohno's method. 
    
    Args:
        :xyzw: 
            | ndarray of tristimulus values
        :cieobs: 
            | luxpy._CIEOBS, optional
            | CMF set used to calculated xyzw.
        :out: 
            | 'cct' (or 1), optional
            | Determines what to return.
            | Other options: 'duv' (or -1), 'cct,duv'(or 2), "[cct,duv]" (or -2)
        :wl: 
            | None, optional
            | Wavelengths used when calculating Planckian radiators.
        :accuracy: 
            | float, optional
            | Stop brute-force search when cct :accuracy: is reached.
        :upper_cct_max: 
            | 10.0**20, optional
            | Limit brute-force search to this cct.
        :approx_cct_temp: 
            | True, optional
            | If True: use xyz_to_cct_HA() to get a first estimate of cct 
              to speed up search.
        :force_out_of_lut: 
            | True, optional
            | If True and cct is out of range of the LUT, then switch to 
              brute-force search method, else return numpy.nan values.
        
    Returns:
        :returns: 
            | ndarray with:
            |    cct: out == 'cct' (or 1)
            |    duv: out == 'duv' (or -1)
            |    cct, duv: out == 'cct,duv' (or 2)
            |    [cct,duv]: out == "[cct,duv]" (or -2) 
            
    Note:
        LUTs are stored in ./data/cctluts/
        
    Reference:
        1. `Ohno Y. Practical use and calculation of CCT and Duv. 
        Leukos. 2014 Jan 2;10(1):47-55.
        <http://www.tandfonline.com/doi/abs/10.1080/15502724.2014.839020>`_
    """

    xyzw = np2d(xyzw)

    if len(xyzw.shape) > 2:
        raise Exception('xyz_to_cct_ohno(): Input xyzwa.ndim must be <= 2 !')

    # get 1960 u,v of test source:
    Yuv = xyz_to_Yuv(
        xyzw)  # remove possible 1-dim + convert xyzw to CIE 1976 u',v'
    axis_of_v3 = len(Yuv.shape) - 1  # axis containing color components
    u = Yuv[:, 1, None]  # get CIE 1960 u
    v = (2.0 / 3.0) * Yuv[:, 2, None]  # get CIE 1960 v

    uv = np2d(np.concatenate((u, v), axis=axis_of_v3))

    # load cct & uv from LUT:
    if cieobs not in _CCT_LUT:
        _CCT_LUT[cieobs] = calculate_lut(ccts=None,
                                         cieobs=cieobs,
                                         add_to_lut=False)
    cct_LUT = _CCT_LUT[cieobs][:, 0, None]
    uv_LUT = _CCT_LUT[cieobs][:, 1:3]

    # calculate CCT of each uv:
    CCT = np.ones(uv.shape[0]) * np.nan  # initialize with NaN's
    Duv = CCT.copy()  # initialize with NaN's
    idx_m = 0
    idx_M = uv_LUT.shape[0] - 1
    for i in range(uv.shape[0]):
        out_of_lut = False
        delta_uv = (((uv_LUT - uv[i])**2.0).sum(
            axis=1))**0.5  # calculate distance of uv with uv_LUT
        idx_min = delta_uv.argmin()  # find index of minimum distance

        # find Tm, delta_uv and u,v for 2 points surrounding uv corresponding to idx_min:
        if idx_min == idx_m:
            idx_min_m1 = idx_min
            out_of_lut = True
        else:
            idx_min_m1 = idx_min - 1
        if idx_min == idx_M:
            idx_min_p1 = idx_min
            out_of_lut = True
        else:
            idx_min_p1 = idx_min + 1

        if (out_of_lut == True) & (force_out_of_lut
                                   == True):  # calculate using search-function
            cct_i, Duv_i = xyz_to_cct_search(xyzw[i],
                                             cieobs=cieobs,
                                             wl=wl,
                                             accuracy=accuracy,
                                             out='cct,duv',
                                             upper_cct_max=upper_cct_max,
                                             approx_cct_temp=approx_cct_temp)
            CCT[i] = cct_i
            Duv[i] = Duv_i
            continue
        elif (out_of_lut == True) & (force_out_of_lut == False):
            CCT[i] = np.nan
            Duv[i] = np.nan

        cct_m1 = cct_LUT[idx_min_m1]  # - 2*_EPS
        delta_uv_m1 = delta_uv[idx_min_m1]
        uv_m1 = uv_LUT[idx_min_m1]
        cct_p1 = cct_LUT[idx_min_p1]
        delta_uv_p1 = delta_uv[idx_min_p1]
        uv_p1 = uv_LUT[idx_min_p1]

        cct_0 = cct_LUT[idx_min]
        delta_uv_0 = delta_uv[idx_min]

        # calculate uv distance between Tm_m1 & Tm_p1:
        delta_uv_p1m1 = ((uv_p1[0] - uv_m1[0])**2.0 +
                         (uv_p1[1] - uv_m1[1])**2.0)**0.5

        # Triangular solution:
        x = ((delta_uv_m1**2) - (delta_uv_p1**2) +
             (delta_uv_p1m1**2)) / (2 * delta_uv_p1m1)
        Tx = cct_m1 + ((cct_p1 - cct_m1) * (x / delta_uv_p1m1))
        #uBB = uv_m1[0] + (uv_p1[0] - uv_m1[0]) * (x / delta_uv_p1m1)
        vBB = uv_m1[1] + (uv_p1[1] - uv_m1[1]) * (x / delta_uv_p1m1)

        Tx_corrected_triangular = Tx * 0.99991
        signDuv = np.sign(uv[i][1] - vBB)
        Duv_triangular = signDuv * np.atleast_1d(
            ((delta_uv_m1**2.0) - (x**2.0))**0.5)

        # Parabolic solution:
        a = delta_uv_m1 / (cct_m1 - cct_0 + _EPS) / (cct_m1 - cct_p1 + _EPS)
        b = delta_uv_0 / (cct_0 - cct_m1 + _EPS) / (cct_0 - cct_p1 + _EPS)
        c = delta_uv_p1 / (cct_p1 - cct_0 + _EPS) / (cct_p1 - cct_m1 + _EPS)
        A = a + b + c
        B = -(a * (cct_p1 + cct_0) + b * (cct_p1 + cct_m1) + c *
              (cct_0 + cct_m1))
        C = (a * cct_p1 * cct_0) + (b * cct_p1 * cct_m1) + (c * cct_0 * cct_m1)
        Tx = -B / (2 * A + _EPS)
        Tx_corrected_parabolic = Tx * 0.99991
        Duv_parabolic = signDuv * (A * np.power(Tx_corrected_parabolic, 2) +
                                   B * Tx_corrected_parabolic + C)

        Threshold = 0.002
        if Duv_triangular < Threshold:
            CCT[i] = Tx_corrected_triangular
            Duv[i] = Duv_triangular
        else:
            CCT[i] = Tx_corrected_parabolic
            Duv[i] = Duv_parabolic

    # Regulate output:
    if (out == 'cct') | (out == 1):
        return np2dT(CCT)
    elif (out == 'duv') | (out == -1):
        return np2dT(Duv)
    elif (out == 'cct,duv') | (out == 2):
        return np2dT(CCT), np2dT(Duv)
    elif (out == "[cct,duv]") | (out == -2):
        return np.vstack((CCT, Duv)).T
コード例 #30
0
         0.00080179, 0.00080258, 0.00080346, 0.00080447, 0.00080565,
         0.00080703, 0.00080865, 0.00081053, 0.00081272, 0.00081272,
         0.00081272, 0.00081272, 0.00081272, 0.00081272, 0.00081272,
         0.00081272, 0.00081272, 0.00081272, 0.00081272, 0.00081272,
         0.00081272, 0.00081272, 0.00081272, 0.00081272, 0.00081272,
         0.00081272, 0.00081272, 0.00081272, 0.00081272, 0.00081272,
         0.00081272, 0.00081272, 0.00081272, 0.00081272, 0.00081272,
         0.00081272, 0.00081272, 0.00081272, 0.00081272, 0.00081272,
         0.00081272, 0.00081272, 0.00081272, 0.00081272, 0.00081272,
         0.00081272, 0.00081272, 0.00081272, 0.00081272, 0.00081272,
         0.00081272, 0.00081272, 0.00081272, 0.00081272, 0.00081272,
         0.00081272, 0.00081272, 0.00081272, 0.00081272
     ]])

F1, F2, F3, F4_, F5, F6, F7, F8, F9, F10, F11, F12 = [
    np.vstack((_IESTM30['S']['data'][0], _IESTM30['S']['data'][i + 1]))
    for i in range(12)
]
_CIE_ILLUMINANTS = {
    'types': [
        'E', 'D65', 'A', 'C', 'F1', 'F2', 'F3', 'F4', 'F5', 'F6', 'F7', 'F8',
        'F9', 'F10', 'F11', 'F12'
    ],
    'E':
    E,
    'D65':
    D65,
    'A':
    A,
    'C':
    C,